
Physik-Institut

Programmieren in C++
FS 2024

Lecture 10: Parallel programming in C/C++

1 Introduction to parallel programming

Today we will go over parallel programming. There are two major types of parallel program-
ming you need to be aware of. The first one we will go over is called parallel processing.
This means that each CPU core is given an independent task. Each core gets to use a given
amount of RAM, and if programmed properly, the cores do not need to communicate with
each other to perform its tasks.
The second major type of parallel programming is called parallel-threading. Modern CPUs
have more than one communication line between the CPU cores and the rest of the computer.
Each communication line is called a thread. The advantage of having multiple thread on a
single core of the CPU is that the CPU can perform more than a single task in one ”cycle”.
Recall our data processing lecture, you were asked to calculate the mean, median and standard
deviation and etc. under a single loop. A CPU core has multiple components which are
responsible for specific operation, such as addition, or comparing two values. The exact works
of how a CPU works depends largely on the model and design of the specific CPU and we will
not cover that in this lecture. For more details regarding the operation of a CPU, I encourage
you to watch this video. For this course, what you need to know is that you can perform
multiple tasks out of a single core by using multi-threading feature.

2 Parallel processing

Parallel processing is rather clean and an easy way to divide a task between CPU cores. You
need to make sure of the following before you start however.

1. How many CPU cores does your computer have?

2. How much RAM does your computer have?

3. How much RAM will each instance of your program use?

The first two, you can simply ask your system. Check the file /proc/cpuinfo

cat /proc/cpuinfo |grep -i core

model name : Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz

core id : 0

cpu cores : 2

model name : Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz

core id : 1

cpu cores : 2

model name : Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz

core id : 0

cpu cores : 2

model name : Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz

core id : 1

cpu cores : 2

https://www.youtube.com/watch?v=cNN_tTXABUA

Programmieren in C++ Lecture 10: Parallel programming in C/C++

The above means you have two CPU cores with 2 threads each. You have therefore 4 threads,
or sometimes called 4 logical cores. For memory, it’s best to use ”free”

free -h

total used free shared buff/cache

available↪→

Mem: 3.8Gi 409Mi 531Mi 199Mi 2.8Gi

2.9Gi↪→

Swap: 8.0Gi 0B 8.0Gi

The above means you have 4 GB of RAM installed, and your system is already using up
409 MiB. You also have 8 GiB of ”Swap” which are the ”virtual” memory using the hard-
drive. If you ever need to use SWAP in your program, you lose all performance advantage
of using RAM. Also, it typically destabilizes the systems functions as the processes will be
slowed down greatly.

If you are using one of the spinorXX.physik.uzh.ch, limit yourself to 2 logical
cores and 1.5 GB of RAM for total usage. This is because most of you are
sharing a computer with 4 GB of RAM. If you use up all of the RAM, the

computers will either crash and/or freeze. We strongly encourage you to use
your own computer for this lecture.

For the last item, you can calculate how much RAM your program will use by hand-calculation
and/or write your own code to perform this calculation before you execute your program.
For the purpose of our course, we will use a bash package called ”gnu-parallel” https://www.
gnu.org/software/parallel/. This package is already installed in spinorXX.physik.uzh.ch
In your version of Linux, you will be able to find one in the default package manager (such
as YAST, apt-get, aptitude, yum and etc.). In Mac, this should available through ”brew”
The installation should take about 1 minute.
Now, consider the following code:

1 // writerandom_and_average.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5 #include <fstream>

6 #include <sstream>

7

8 using namespace std;

9

10 void writerandom(int variable, string filename){

11 stringstream filename_extender;

12 filename_extender<<"randoms/"<<filename<<".txt";

13 ofstream outputfile;

14 outputfile.open(filename_extender.str().c_str());

15 for (int i=0; i<variable; i++){

16 outputfile<<rand()<<endl;

17 }

18 outputfile.close();

19 }

20

21 void writeaverage(string inputfilename, string outputfilename){

22 stringstream inputfilename_extender;

23 inputfilename_extender<<"randoms/"<<inputfilename<<".txt";

24 stringstream outputfilename_extender;

2 PARALLEL PROCESSING 2

https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/

Programmieren in C++ Lecture 10: Parallel programming in C/C++

25 outputfilename_extender<<"randoms/"<<outputfilename<<".txt";

26

27 ifstream inputfile;

28 inputfile.open(inputfilename_extender.str().c_str());

29 inputfilename_extender.str(string());

30 inputfilename_extender<<inputfilename<<".txt";

31 ofstream outputfile;

32 outputfile.open(outputfilename_extender.str().c_str(), ios::app);

33 int temp_int=0;

34 int sum=0;

35 int counter=0;

36 while(inputfile >> temp_int){

37 sum+=temp_int;

38 counter++;

39 }

40 int average = sum/counter;

41 outputfile<<inputfilename_extender.str()<<"\t"<<average<<endl;

42 inputfile.close();

43 outputfile.close();

44 }

45

46 int main(int argc,char *argv[]){//Main begins

47

48 if(argc==1){

49 string filename="name";

50 stringstream namecounter;

51

52 for (int i=0 ; i < 1000; i++){

53 namecounter.str(string());

54 namecounter<<filename<<i;

55 writerandom(100,namecounter.str().c_str());

56 writeaverage(namecounter.str().c_str(), "averages");

57 }

58 }

59

60 if(argc==2){

61 string filename=argv[1];

62 stringstream namecounter;

63

64 for (int i=0 ; i < 1000; i++){

65 namecounter.str(string());

66 namecounter<<filename<<i;

67 writerandom(100,namecounter.str().c_str());

68 writeaverage(namecounter.str().c_str(), "averages");

69 }

70 }

71

72 if (argc==3){

73 string filename=argv[1];

74 int number_of_random_files=strtol(argv[2], NULL, 10);

75 stringstream namecounter;

76

77 for (int i=0 ; i < number_of_random_files; i++){

2 PARALLEL PROCESSING 3

Programmieren in C++ Lecture 10: Parallel programming in C/C++

78 namecounter.str(string());

79 namecounter<<filename<<i;

80 writerandom(100,namecounter.str().c_str());

81 writeaverage(namecounter.str().c_str(), "averages");

82 }

83 }

84

85 return 0;

86 } // Main ends

The code above can be executed in 3 different ways. First one:

run_writerandom_and_average.exe

This will run argc==1 case, where it writes 100 random integers into nameX.txt file. It will
write 1000 nameX.txt file and log the average of nameX.txt files into averages.txt file.

run_writerandom_and_average.exe newname

This will run argc==2 case, where it writes 100 random integers into 1000 newnameX.txt file
and logs the average of newnameX.txt files into averages.txt file

run_writerandom_and_average.exe blah 5000

This will run argc==3 case, where it writes 5000 blahX.txt file and logs the average of
blahX.txt file into averages.txt file. This isn’t particularly useful, but we will use the above
as example for running parallel processes.
For instance, suppose you wanted to execute all three in series. You should write them into
a bash script.

1 #!/bin/sh

2 #runeverything_serial.sh

3 run_writerandom_and_average.exe ;

4 run_writerandom_and_average.exe newname 5000;

5 run_writerandom_and_average.exe blah 3000;

If you run the above script, everything will run in series, one process after another. Even on
my high performance laptop, this takes quite a while.

> time runeverything_serial.sh

real 0m28.450s

user 0m1.281s

sys 0m19.547s

Now, let’s us gnu parallel to run the three of them and time it. We’ll first write the following
in a bash script.

1 #!/bin/sh

2 #runeverything_parallel.sh

3 parallel ::: './run_writerandom_and_average.exe one 1000'

'./run_writerandom_and_average.exe newname 5000'

'./run_writerandom_and_average.exe blah 3000'

↪→

↪→

When we run the above, we will notice that we’re saving some time. Also, writing down each
and every operation gets tedious quickly. We also want to have control over how many logical
cores are assigned to the task.

2 PARALLEL PROCESSING 4

Programmieren in C++ Lecture 10: Parallel programming in C/C++

time runeverything_parallel.sh

real 0m10.496s

user 0m1.313s

sys 0m12.719s

To have a better control of how many logical cores are being written, we should write the
commands in a temporary file parameters.tmp:

1 ./run_writerandom_and_average.exe one 1000

2 ./run_writerandom_and_average.exe newname 5000

3 ./run_writerandom_and_average.exe blah 3000

then write a script as the following

1 #!/bin/sh

2 cat parameters.tmp | parallel -j 3

The last script must end at ”3”. The script has to have no extra lines or space, otherwise
gnu parallel will give you an error. Gnu parallel is very sensitive to syntax including where
you place an empty space. The 3 denotes that 3 jobs will run simultaneously. More jobs/cores
you allow for the job, the faster the execution will be. Now, let’s start practice using these.

2 PARALLEL PROCESSING 5

Programmieren in C++ Lecture 10: Parallel programming in C/C++

= The practical programming part of this
course will now begin for 60 minutes. =

2 PARALLEL PROCESSING 6

Programmieren in C++ Lecture 10: Parallel programming in C/C++

3 Practice parallel processing

1. Write ”writerandom and average.cxx” from scratch and test it in serial mode.

2. Write a bash script to run the above for 10 different file names, 2000 random numbers
in serial and time it.

3. Write a bash script do the same using gnu parallel and time it.

4. Modify your code so that you can generate the random numbers, store them in your
RAM then write at the end of the program. Test it and run the timer to compare with
everything else before.

5. Visit https://www.gnu.org/software/parallel/parallel tutorial.html for more informa-
tion, and try to execute your programs in parallel using different syntaxes not mentioned
in the lecture.

3 PRACTICE PARALLEL PROCESSING 7

https://www.gnu.org/software/parallel/parallel_tutorial.html

Programmieren in C++ Lecture 10: Parallel programming in C/C++

= The theoretical lecture part of this course
will now continue for 15 minutes. =

3 PRACTICE PARALLEL PROCESSING 8

Programmieren in C++ Lecture 10: Parallel programming in C/C++

4 Parallel threading

It’s important to note that even though parallel threading can be considered relatively new,
there has been enough time for multiple companies and developers to create packages to per-
form parallel threading differently. There are options such as Boost, QT Qthread, (standard
library) thread or (POSIX) pthread. Some are considered more stable in some operating
systems than the others. For our course, we will only use pthread. For more informa-
tion please visit https://www.bogotobogo.com/cplusplus/multithreading pthread.php, https:
//www.bogotobogo.com/cplusplus/multithreaded4 cplusplus11.php and https://en.cppreference.
com/w/cpp/thread.

4.1 Pthread example

In order to use pthread you must include at the top of your code as usual.

1 #include <pthread.h>

If you try to compile right away, compilation will fail since you need to give your compiler
another flag

1 -lpthread

Your Makefile now should look something similar to the following

1 #This is the directory of YOUR source code.

2 sourcedirectory=./

3

4 #These are your source codes and components

5 trial=$(wildcard *.cxx)

6 first_part=myobjects.cxx

7 second_part=main.cxx

8 component=myobjects.cxx

9

10 #Here, we're defining the compilers.

11 CC=gcc

12 CPP=g++

13 NVCC=nvcc

14

15 #We're defining systems variable such as "remove" from system and

"timestamp"↪→

16 RM=rm

17 TIMESTAMP=$(shell date +"%Y_%m_%d_T-%H_%M")

18

19 SFLAG=-Wall

20 PFLAG=-lncurses -lpthread

21 ROOTFLAG=-g $(shell root-config --cflags --glibs)

22

23 ALLFLAG= $(SFLAG) $(ROOTFLAG)

24

25

26 objects = $(trial:.cxx=)

27

28 #objects =

29 #When a Makefile is executed, by default it tries the option "all"

30 all: clean $(objects)

4 PARALLEL THREADING 9

https://www.bogotobogo.com/cplusplus/multithreading_pthread.php
https://www.bogotobogo.com/cplusplus/multithreaded4_cplusplus11.php
https://www.bogotobogo.com/cplusplus/multithreaded4_cplusplus11.php
https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/thread

Programmieren in C++ Lecture 10: Parallel programming in C/C++

31 #We will tell the makefile to clean, compile the first component, second

then the third component.↪→

32

33

34 $(objects): %: %.cxx

35

36 @echo Compiling $(sourcedirectory)$<

37 @$(CPP) -o $(addprefix run_,$@.exe) $(SFLAG) $< $(PFLAG)

38 @echo Successfully compiled $(sourcedirectory)$<

39 @echo executable is $(addprefix run_,$@.exe)

40

41 first:

42 #Here, we define what "first_one" will do.

43 #At sign @ will silence the command appering in the terminal

44 @echo Compiling $(sourcedirectory)$(first_part)

45 @$(CPP) -o $(first_part).o $(SFLAG) $(sourcedirectory)$(first_part)

$(PFLAG)↪→

46 @echo Successfully compiled $(sourcedirectory)$(first_part)

47 @echo The compiled object is $(first_part).o

48 second:

49 #Let's now compile the second part.

50 @echo Compiling $(sourcedirectory)$(second_part)

51 @$(CPP) -c -o $(second_part).o $(SFLAG)

$(sourcedirectory)$(second_part) $(PFLAG)↪→

52 @echo Successfully compiled $(sourcedirectory)$(second_part)

53 @echo The unliked compiled code is $(second_part).o

54

55 @echo Compiling $(sourcedirectory)$(component)

56 @$(CPP) -c -o $(component).o $(SFLAG) $(sourcedirectory)$(component)

$(PFLAG)↪→

57 @echo Successfully compiled $(sourcedirectory)$(component)

58 @echo The unliked compiled code is $(component).o

59 third:

60 #Let's link the second part

61 @echo Linking $(component).o and $(second_part).o

62 @$(CPP) -o compiled_program.exe $(SFLAG)

$(sourcedirectory)$(component).o

$(sourcedirectory)$(second_part).o $(PFLAG)

↪→

↪→

63 @echo Successfully compiled $(sourcedirectory)$(component)

64 @echo Everything is linked and compiled into compiled_program.exe

65 clean:

66 @echo $(TIMESTAMP)

67 @echo "Making old/$(TIMESTAMP) directory"

68 $(shell mkdir -p old/$(TIMESTAMP))

69 @echo "Copying the source to the old directory"

70 $(shell cp -r $(sourcedirectory)/*.cxx old/$(TIMESTAMP))

71 @echo "Moving all .exe to the old directory"

72 $(shell mv *.exe old/$(TIMESTAMP))

73 $(shell mv *.o old/$(TIMESTAMP))

74 @echo "Copying the Makefile to the old directory"

75 $(shell cp Makefile old/$(TIMESTAMP))

76 # £this line is only added to comply with LATEX formatting.

4 PARALLEL THREADING 10

Programmieren in C++ Lecture 10: Parallel programming in C/C++

The only change you since the last Makefile example is that now PFLAG in line 20 has
-lpthread also and that line 37 uses SFLAG instead of ALLFLAG.
Now that we’ve set the flags, let’s go over an example.

1 // pthreader_basic.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5 #include <fstream>

6 #include <sstream>

7 #include <pthread.h>

8

9 using namespace std;

10

11 void *ThreadChecker(void *thread_ID){

12 long t_id;

13 t_id=(long)thread_ID;

14 cout<<"Checking thread: "<<t_id<<endl;

15 pthread_exit(NULL);

16 }

17

18 int main(int argc,char *argv[]){ // Main begins

19 const int max_threads_used=8;

20 const int mtu=max_threads_used;

21

22 pthread_t threads[mtu];

23 int runcommand;

24

25 for (long i=0; i<mtu; i++){

26 runcommand = pthread_create(&threads[i], NULL,

ThreadChecker, (void *)i);↪→

27 if (runcommand){

28 cout << "Error:unable to create thread," <<

runcommand << endl;↪→

29 exit(-1);

30 }

31 }

32

33 pthread_exit(NULL);

34 return 0;

35 } // Main ends

The above code will initiate your threads and let you know if is possible to assign the thread
a job. In my computer, I have 8 threads. I can process 8 threaded process in parallel
instantaneously. If I place a number higher than 8 in line number 19, the program will start
running in Serial. The output of the above code is as follows:

Checking thread: 0

Checking thread: 1

Checking thread: 2

Checking thread: 3

Checking thread: 4

Checking thread: 5

Checking thread: 6

4 PARALLEL THREADING 11

Programmieren in C++ Lecture 10: Parallel programming in C/C++

Checking thread: 7

Everything above is in order. However, as ”weird” as it may look, depending on which thread
is being used by other component of the computer operations, the thread ID may not be in
order. If the above command is run again after a while, I get the following:

Checking thread: 0

Checking thread: 1

Checking thread: 2

Checking thread: 3

Checking thread: 4

Checking thread: 6

Checking thread: 7

Checking thread: 5

There are also times when some of the threads are busy with another task, and may not be
in synchronization with your code, in which case your program will produce core dump and
crash. There are ways to prevent such things but we will not cover that in this course. Next,
consider the following extension to the previous example:

1 // pthreader.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5 #include <fstream>

6 #include <sstream>

7 #include <pthread.h>

8

9 using namespace std;

10

11 void *ThreadChecker(void *thread_ID){

12 long t_id;

13 t_id=(long)thread_ID;

14 cout<<"Checking thread: "<<t_id<<endl;

15 pthread_exit(NULL);

16 }

17

18 void writerandom(int variable, string filename){

19 stringstream filename_extender;

20 filename_extender<<"randoms/"<<filename<<".txt";

21 ofstream outputfile;

22 outputfile.open(filename_extender.str().c_str());

23 for (int i=0; i<variable; i++){

24 outputfile<<rand()<<endl;

25 }

26 outputfile.close();

27 }

28

29 void *assign_thread_writerandom(void *thread_ID){

30 long t_id;

31 t_id=(long)thread_ID;

32 stringstream filename_extender;

33 filename_extender<<"Written_By_Thread_ID_"<<t_id;

34 writerandom(1000000,filename_extender.str().c_str());

4 PARALLEL THREADING 12

Programmieren in C++ Lecture 10: Parallel programming in C/C++

35 pthread_exit(NULL);

36 }

37

38 void writeaverage(string inputfilename, string outputfilename){

39 stringstream inputfilename_extender;

40 inputfilename_extender<<"randoms/"<<inputfilename<<".txt";

41 stringstream outputfilename_extender;

42 outputfilename_extender<<"randoms/"<<outputfilename<<".txt";

43 ifstream inputfile;

44 inputfile.open(inputfilename_extender.str().c_str());

45 inputfilename_extender.str(string());

46 inputfilename_extender<<inputfilename<<".txt";

47 ofstream outputfile;

48 outputfile.open(outputfilename_extender.str().c_str() ,ios::app);

49 int temp_int=0;

50 int sum=0;

51 int counter=0;

52 while(inputfile >> temp_int){

53 sum+=temp_int;

54 counter++;

55 }

56 int average = sum/counter;

57 outputfile<<inputfilename_extender.str()<<"\t"<<average<<endl;

58 inputfile.close();

59 outputfile.close();

60 }

61

62 void *assign_thread_writeaverage(void *thread_ID){

63 long t_id;

64 t_id=(long)thread_ID;

65 stringstream filename_extender;

66 filename_extender<<"Written_By_Thread_ID_"<<t_id;

67 writeaverage(filename_extender.str().c_str(),"average");

68 pthread_exit(NULL);

69 }

70

71 int main(int argc,char *argv[]) { // Main begins

72 const int max_threads_used=8;

73 const int mtu=max_threads_used;

74

75 pthread_t threads[mtu];

76 int runcommand;

77

78 for (long i=0; i<mtu; i++){

79 runcommand = pthread_create(&threads[i], NULL,

ThreadChecker, (void *)i);↪→

80 if (runcommand){

81 cout << "Error:unable to create thread," <<

runcommand << endl;↪→

82 exit(-1);

83 }

84 }

85

4 PARALLEL THREADING 13

Programmieren in C++ Lecture 10: Parallel programming in C/C++

86 for (long i=0; i<mtu; i++){

87 runcommand = pthread_create(&threads[i], NULL,

assign_thread_writerandom, (void *)i);↪→

88 if (runcommand){

89 cout << "Error:unable to create thread," <<

runcommand << endl;↪→

90 exit(-1);

91 }

92 }

93

94 for (long i=0; i<mtu; i++){

95 runcommand = pthread_create(&threads[i], NULL,

assign_thread_writeaverage, (void *)i);↪→

96 if (runcommand){

97 cout << "Error:unable to create thread," <<

runcommand << endl;↪→

98 exit(-1);

99 }

100 }

101

102

103 pthread_exit(NULL);

104 return 0;

105 } // Main ends

Notice that each job from parallel processing example has been modified such that a single
thread can be assigned to a specific task. If you watch your systems monitor while this
program is running, you will notice that all of your threads are being utilized.
Since there are absolutely no dependencies between threads, this code should almost always
work. You can of course assign each thread to different jobs.
For the purpose of this course, we will not cover more materials, but you must also consider
which task needs to be completed before another. This is called racing condition. If one oper-
ation needs to be completed before another, you must interrupt the thread that is ahead of the
other and tell it to wait. We strongly encourage you to read https://www.bogotobogo.com/
cplusplus/multithreading pthread.php for more. For now, let’s practice what we’ve covered.

4 PARALLEL THREADING 14

https://www.bogotobogo.com/cplusplus/multithreading_pthread.php
https://www.bogotobogo.com/cplusplus/multithreading_pthread.php

Programmieren in C++ Lecture 10: Parallel programming in C/C++

= The practical programming part of this
course will now begin for 60 minutes. =

4 PARALLEL THREADING 15

Programmieren in C++ Lecture 10: Parallel programming in C/C++

5 Practice parallel threading

1. Change your compiler to include -lpthread and re-compile all of your codes.

2. Write from scratch the pthreader.cxx.

3. Compile and execute the results, be sure to change the number of maximum threads to
match your systems specification.

4. Go to your functions package. Copy and create a new .cxx and .h files called ”as-
sign thread functions”.

5. Create functions in the above so that you can assign a thread to each of the functions
in your functions package.

6. Compile your functions package, objects package, assign thread functions and main all
together and test the executable.

6 Conclusion

At this point, you have learned more than 3 semesters worth of programming in 10 days.
We were able to do this because we left out a lot of theoretical components that are very
important. We can really say that we’ve touched almost all of the important basic tools
available in C++ but there are more tools and packages especially in the branch of parallel
programming. There are packages such as OpenCL and OpenGL which allow you to also
use the GPU. There is also a comprehensive proprietary GPU programming language called
CUDA for NVIDIA graphics cards.
The purpose of this course is to show you the practical skills in C++ programming but
obviously we did not have the time go through everything in detail. Be be sure to look online
and read other resources as you program more in the future. The C++ language is always
evolving and there are new changes and new packages being developed every year.
I wish to congratulate all of you who have been able to follow the course this far, and I hope
the course will be helpful for everyone.

This concludes PHY224 in 2024. I wish to thank you all for your attention.

Thank you everyone!

-Steven J. Lee (SJL)

Steven J. Lee, Roland Bernet 30. August 2024

6 CONCLUSION 16

	Introduction to parallel programming
	Parallel processing
	Practice parallel processing
	Parallel threading
	Pthread example

	Practice parallel threading
	Conclusion

