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Abstract

Gravitational parity violation induces an enhancement or suppression of the right- versus left-
handed polarizations of gravitational-waves, called amplitude birefringence. In gravitational-
wave signals from compact object binaries, this effect leads to a change in the apparent orienta-
tion of the binary system. The apparent change in the inclination angle could be used to probe
amplitude birefringence. We investigate this phenomenon in the context of multi-messenger ob-
servations of gravitational-waves and electromagnetic signals from binary mergers. We estimate
the strength of birefringence for observable effects and pursue a Fisher information analysis
to make more general statements on the mesurability of birefringence. In particular, with the
event GW170817, we are able to place an upper bound κ < 20.2 Gpc−1 on a parameter char-
acterizing the strength of amplitude birefringence. Furthermore we show estimates of an upper
bound on a Chern-Simons length scale depending on the comoving distance to the source and
the signal-to-noise ratio.
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Introduction

Gravitational-waves are cosmic ripples in space-time produced in circumstances with extreme
conditions − the strongest gravitational fields, densest celestial bodies and highest energy scales
in physics. The strongest gravitational-waves are caused by some of the most violent and
energetic processes in the universe such as supernovae or collisions of black holes or neutron
stars. Albert Einstein predicted the existence of gravitational-waves in his general theory of
relativity in 1916. His theory predicts that accelerated masses, such as black holes or neutron
stars orbiting each other, would disrupt space-time in such a way that waves would propagate
away from the source at the speed of light. These gravitational-waves (GWs) encode information
about their origins and the nature of gravity itself. The first direct detection of GWs was
achieved by LIGO in 2015 [1], when a transient GW signal generated by two colliding black
holes 1.3 billion light-years away was observed. Subsequent detections of GWs by the LIGO-
Virgo scientific collaboration have now led to the first confirmations of Einstein’s theory in
extreme gravity [2, 3], where gravity is strong and dynamical. Observations of GWs provide an
excellent opportunity to test general relativity (GR) and alternative theories of gravity in this
extreme gravity regime.

In this thesis, we will focus on testing the parity symmetry in gravity with GWs from compact
object binaries. In Chapter 1 we will derive the parity-violating gravitational-waveform with
parametrized deviations from GR in the framework of effective field theory. Parity violation
has two main effects on the propagation of GWs, namely amplitude and velocity birefringence.
We will further focus on amplitude birefringence, which causes different damping rates for the
right- and left-handed polarization modes during propagation. This effect can be interpreted
as a change in the apparent inclination angle of the binary. As put by Alexander et al. [4]:
In the same way that we say that the curvature of spacetime “bends” light passing close to
strongly gravitating bodies we may say that the effect of the amplitude correction is to “rotate”
the apparent inclination angle of the binary system’s orbital angular momentum axis either
toward or away from us. We will explore this effect in Chapter 2 with a formalism that allows
us to relate the apparent change in inclination to a parameter that can be used to constrain
parity violating effects. A difference between the apparent inclination angle, called effective
inclination, as is is seen by GW detectors and the actual true inclination as it could be inferred
from an electromagnetic (EM) counterpart of binary mergers could in principle be observed when
parity is violated. In order to understand in which circumstances it is possible to measure the
inclination of a binary merger electromagnetically − and thus independent of the GW parameter
estimation − we will review the main aspects of EM counterparts of compact binary mergers in
Chapter 3. In Chapter 4 we will discuss the measurement of binary inclination angles via EM
or GW signals. Then we will review the basics of GW data analysis in Chapter 5, in particular
we consider Fisher information to estimate the measurement accuracy of binary parameters.

In the second part of this thesis, we will first estimate how large the birefringence effect
on GWs would need to be in order to produce observable differences in the effective and true
inclination in Chapter 6. Then, in Chapter 7, we will use Fisher information to study more sys-
tematically estimations of the parameter characterizing the strength of amplitude birefringence.
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Definitions

The total inclination of the binary is defined as the angle θJN between the system’s total angular
momentum J and the line of sightN , whereas the orbital inclination, or just inclination, ι defines
the angle between the orbital angular momentum L and N . We define the viewing angle of
the binary as Θ ≡ min(ι, 180◦ − ι). Throughout this thesis, the metric convention is chosen as
(−,+,+,+) and we use units with c = ~ = 1.



Part I

Theory and methods
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1 Gravitational parity violation

Symmetries are fundamental to all laws of modern physics. Therefore, it is important to exper-
imentally test the conservation of these symmetries. Parity symmetry implies the invariance of
physical laws under the reversal of spatial coordinates. This means that a directional flipping to
the right or left does not change the laws of physics. It is well known that parity is conserved for
the strong and electromagnetic interactions but is broken in weak interactions [5], first discov-
ered in beta-decay of cobalt-60 [6, 7]. Gravitational parity is conserved in Einstein’s theory of
general relativity. Nevertheless, in some fundamental theories of gravity, such as string theory
and loop quantum gravity, parity violation in the high energy regime is inevitable [8]. Vari-
ous parity violating theories of gravity have been proposed for different motivations, including
Chern-Simons gravity, ghost-free scalar-tensor gravity, the symmetric teleparallel equivalence of
GR theory and Hořava-Lifshitz gravity. Thus it is necessary to experimentally test the parity
symmetry in the gravity sector.

1.1 Gravitational-waves in parity violating gravities

Our aim is to investigate possible imprints of parity violations in gravitational-waves. We want to
derive a generalized waveform generated by compact binaries in the presence of parity violation
using the effective field theory (EFT) formalism. Working within an EFT formalism ensures
that the approximate theory is well-posed and that the corrections to GR are small [9]. EFT
provides a systematic framework to encode different modifications to an existing theory and
thus to test a range of modified gravity theories at once [5].

In particular, we assume that all modifications to the waveform arise from parity violating
propagation effects and ignore the generation effects mainly causing a modified energy loss, in-
spiral rate and chirping rate of the binary. This assumption is justified because the generation
effects occur on a radiation-reaction time scale, which is much smaller than the GW travelling
time, making their modifications to the waveform negligible [10].

To investigate possible propagation effects due to parity violation, we consider the perturbation
theory of the gravitational field and assume the gravitational-waves to propagate in a homoge-
neous and isotropic background. In a flat Friedmann-Robertson-Walker universe the line element
can be written as

ds2 = a2(τ)
[
−dτ2 + (δij + hij)dx

idxj
]
, (1.1)

where the tensor perturbations hij of the metric represents the GW. This expression is written
in terms of the conformal time τ which relates to the cosmic time t by dt = adτ , and a(τ)
being the conformal scale factor of the universe with the present value a0 = 1 and xi the spatial
coordinates. The spatial part of the metric is written as

gij = a2(τ)(δij + hij)(τ, x
i). (1.2)

The metric perturbations are taken to be transverse and traceless, i.e. ∂ihij = 0 and δijhij = 0.
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5 Chapter 1. Gravitational parity violation

We consider parity violating gravities with the action of the form [11]

S =
1

16πG

∫
dτd3xa4(τ) [LGR + LPV + Lother] , (1.3)

where LGR is the Einstein-Hilbert term with the Ricci scalar R and LPV is the parity violating
Lagrangian, which consists of a number of terms in the specific models. Lother is the Lagrangian
for other matter fields, scalar fields and modification terms of gravity which are not relevant to
parity violation. Lother will therefore not be considered in what follows. For a detailed derivation
and discussion of the effective action that incorporates gravitational parity violation consider
[10, 12].

In order to derive the equation of motion for the GWs in vacuum, we first need to substitute
the metric perturbation into the action and expand it to second order in hij to obtain the
quadratic action [12]

S(2) =
1

16πG

∫
dτd3xa4(τ)

[
L(2)

GR + L(2)
PV

]
, (1.4)

where

L(2)
GR =

1

4a2

[
(h′ij)

2 − (∂khij)
2
]
,

L(2)
PV =

1

4a2

[
c1(τ)

a
εijkh′il∂jh

′
kl +

c2(τ)

a
εijkhil∂

2hil∂jhkl

]
.

(1.5)

A prime denotes the derivative with respect to the conformal time τ and ∂j the derivative with
respect to spatial coordinates. εijk is the Levi-Civita tensor. EFT suggests that the leading

order contribution from parity violation in L(2)
PV comes from terms with three derivatives. The

coefficients c1 and c2 are functions of time which are determined by the specific models of
modified gravity. This effective field theory with leading order extensions to GR can describe
the GW propagation effect with parity violation for all existing modified gravity models [12, 11].

By varying the action with respect to hij , the field equation of motion for hij is obtained
[12]

h′′ij + 2Hh′ij − ∂2hij +
εilk

aMPV
∂l
[
c1h
′′
jk + (Hc1 + c′1)h′jk − c2∂

2hjk
]

= 0, (1.6)

where H ≡ a′/a.
When working with parity violation, it is convenient to decompose the GWs into circular

polarization modes. One can decompose hij into different polarization states as follows [9]

hij =
∑
P

hP e
P
ij , (1.7)

where P denotes the polarization states and ePij is the polarization basis. A common choice is
the “plus” + and “cross” × polarization basis, but circular polarizations are more useful in the
context of parity violation. Thus we choose P = A = (R,L) corresponding to the right- and
left-handed modes respectively. The circular polarization bases are written in terms of the +
and × mode polarization tensors e+

ij and e×ij as [13]
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eRij =
e+
ij + ie×ij√

2
, eLij =

e+
ij − ie

×
ij√

2
. (1.8)

Similarly one can write hA in terms of h+,× as

hR =
h+ − ih×√

2
, hL =

h+ + ih×√
2

. (1.9)

To study the evolution of hij in Equation (1.6), we expand it over spatial Fourier harmonics
[11, 12]

hij(τ, x
i) =

∑
A=R,L

∫
d3k

(2π)3
hA(τ, ki)eikix

i
eAij(k

i). (1.10)

The propagation equation of the left- and right-handed modes are decoupled and can be cast
into the form [12]

h′′A + (2 + νA)Hh′A + (1 + µA)k2hA = 0, (1.11)

where k is the wave number and

νA =
ρAk(c1H− c′1)/(aH)

1− ρAkc1/a
' ρAk(c1 − c′1/H)/a, (1.12)

µA =
ρAk(c1 − c2)/a

1− ρAkc1/a
' ρAk(c1 − c2)/a, (1.13)

with ρR = +1 and ρL = −1. The approximations in νA and µA are based on the assumption
that kc1 � 1 and kc2 � 1 which is discussed in [12].

The effects of the parity violating terms are fully characterized by the two parameters µA and
νA. The parameter µA modifies the conventional dispersion relation and determines the speed
of the gravitational-waves, which leads to different velocities of right- and left-handed circular
polarizations, resulting in different arrival times of the two modes. This phenomenon is called
velocity birefringence.

The parameter νA changes the friction term in the GW propagation equation, which gives
rise to an amplitude modification to the gravitational-waveform, such that the amplitude of
the right-hand circular polarization increases during propagation while the amplitude of the
left-hand polarization decreases or vice-versa. This effect is called amplitude birefringence.

It is interesting to note that in Chern-Simons (CS) modified gravity there are no modifications
on the velocity of GWs but the parity violation only affects the amplitude. However, in the ghost-
free parity violating gravities and other theories both velocity and amplitude birefringence effects
exist during the propagation of GWs. A thorough review of general parity violating gravities is
provided in [11].

As demonstrated by [12, 11], the parity-violating waveform in Fourier domain can be expressed
as

hA = hGR
A δhAe

iδΨA , (1.14)
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with hGR
A being the GR waveform and δhA and δΨA the amplitude and phase corrections due

to parity violating effects.
As demonstrated in [14], a modified dispersion relation leads to a GW phase correction1

δΨA = (πf)2ρA

∫ t0

te

c1 − c2

a2
dt, (1.15)

where f is the GW frequency at the detector.

The amplitude modification is given by [12]

δhA = exp

(
−1

2

∫ τ0

τe

HνAdτ
)

= exp

(
−ρAk

2

∫ τ0

τe

(c1H− c′1)

a
dτ

)
. (1.16)

From this we see clearly that the effect of gravitational parity violation is an enhancement/suppression
of the right/left-polarized content of a GW. By mapping from the circular polarization bases to
the linear (+,×) basis, using h+ = (hR + hL)/

√
2 and h× = i(hR − hL)/

√
2, one can observe

a mixing of the (+,×) polarisations that is enhanced upon propagation [10]. Linearizing about

the GR solution, using δhA = 1 + ρAδh̃ and hA = hGR
A (1 + ρAδh̃)eiρAδΨ̃ , we find [5]

h+ = hGR
+ − hGR

× (iδh̃− δΨ̃), h× = hGR
× + hGR

+ (iδh̃− δΨ̃). (1.17)

This polarization mixing is the main parity violating propagation effect, meaning that the initial
polarization state is not conserved under propagation.

1.2 General gravitational-wave amplitude birefringence

Let us now focus on amplitude modifications in the waveform arising from parity violations. We
can write the amplitude correction factor given in Equation (1.16) in the following form

δhR = exp (πfκ̃) , δhL = exp (−πfκ̃) , (1.18)

where we used that k = 2πf , with f being the frequency of the gravitational-wave. The
parameter κ̃ can be interpreted as an opacity parameter that characterizes the strength of
amplitude birefringence. This parameter can be mapped on to various beyond-GR theories.
Comparing with Equation (1.16) we find that

κ̃ = −
∫ τ0

τe

(c1H− c′1)

a
dτ. (1.19)

The coefficients c1 for some modified gravity models are presented in [11].
By experimentally constraining κ̃ in gravitational-waves it is possible to generally probe

amplitude birefringence but also to place constraints on specific parameters in modified gravity

1A more general parametrized dispersion relation is constructed in [14] that reproduces a range of known
Lorentz-violating predictions of modified gravity theories. Their impact on the propagation of GWs is studied
and the GW phase corrections are given in their equations 28 − 32. These phase corrections to GR are used by
the LIGO and Virgo collaboration in their parametrized tests of gravitational-wave propagation in [2].
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theories.

Assuming that |πfκ̃| � 1, which is justified in the effective field theory treatment, we can
linearize about the GR solution to obtain δhA = 1 + ρAπfκ̃ and hA = hGR

A (1 + ρAπfκ̃). Now
the plus and cross polarizations can be written as

h+ = hGR
+ − hGR

× iπfκ̃, h× = hGR
× + hGR

+ iπfκ̃. (1.20)

1.3 Amplitude birefringence in Chern-Simons gravity

Chern-Simons modified gravity is an effective extension of general relativity that incorporates
leading-order gravitational parity violation. The theory of generic parity violation as it has been
studied in 1.1 has been shown to reduce to dynamical Chern-Simons gravity [10, 15, 8].

In CS gravity, the Einstein-Hilbert action of GR is modified through the inclusion of a
scalar field θ coupled to a term quadratic in space-time curvature. This leads to an exponential
enhancement and suppression of the GW amplitudes of the right versus left circularly-polarized
modes during propagation. The strength of this amplitude birefringence is governed by the
properties of the CS scalar field [8]. The amplitude correction we derived in Equation (1.16) in
the case of CS gravity is usually expressed as

δhA = exp

(
ρAk(t)

H0
ζ(θ)

)
, (1.21)

with k(t) being the wavenumber for a given Fourier propagating mode and ζ is a dimensionless
function of the integrated history of the CS scalar field. H0 is the Hubble constant.

The function ζ(θ) has been calculated in [8] for a matter dominated cosmological model, in
which a(η) = a0η

2, in terms of dimensionless conformal time η (with the convention of η = 1
corresponding to the present day) as

ζ(θ) = H2
0

∫ 1

η

[
1

4
θ′′(η)− 1

η
θ′(η)

]
dη

η4
. (1.22)

For GW sources at large redshifts z . 30, to which space-based detectors like LISA will be
sensitive, the GWs travel over cosmological distances and can well be described in a matter
dominated cosmological model [4].

In a dark energy dominated universe with scale factor a(t) = a0e
H0t, ζ has been computed by

[16] to be

ζ(θ) =
H2

0

2

∫ 1

η

[
ηθ′′(η)− 2ηθ′(η)

]
dη. (1.23)

This would be applicable to GW sources in the local universe, such as those found by LIGO at
redshifts z . 1, where the universe is dark energy dominated.
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1.4 Chern-Simons length scale of non-dynamical CS gravity

In non-dynamical CS gravity, the scalar field θ does not evolve dynamically, but is instead
externally prescribed. Within this non-dynamical model, there is a particular choice of θ that
has been extensively used; the canonical profile [15, 8]

θ =
t

µ
, (1.24)

where µ is some mass scale with units [µ] = L−1. Note that this field profile is isotropic and
that for large µ we recover GR.

The CS length scale for this profile can be defined as [16]

l0 ≡
1

µ
. (1.25)

With this field profile, ζ(θ) can be computed for a dark energy dominated universe given in
Equation (1.22). Using [16]

θ′ =
dθ

dη
=
dθ

dt

dt

dη
, with

dt

dη
= a(η) = − 1

H0η
, (1.26)

we find that

θ′ = − l0
H0η

, θ′′ =
l0

H0η2
. (1.27)

Inserting this into Equation (1.22) and evaluating the integral we find that [16]

ζ(θ) =
3H0l0

2c
(1− η) =

3H2
0dC l0
2c

. (1.28)

Here we have reintroduced a factor of c and set (1 − η) c
H0
∼ dC , with dC being the comoving

distance2 to the source.

The opacity parameter κ̃ defined in Equation (1.18) can be mapped to the function ζ(θ) as

κ̃ =
2

H0
ζ(θ). (1.29)

Therefore, by measuring κ̃, the Chern-Simons length scale for a canonical θ profile can be
computed as

l0 =
κ̃c2

3dCH0
. (1.30)

An experimental bound on κ̃ thus translates to a bound on l0.

2Recall the definitions of the comoving distance dC = c
∫ t0
te

dt′

a(t′) and the conformal time τe =
∫ te

0
dt′

a(t′) with te
and t0 being the time at emission and the current cosmic time respectively and t = 0 corresponding to the time
at the Big Bang [17]. For a treatment of our problem using units of dimensionless conformal time, see Appendix
C of [16].



2 A formalism for gravitational-wave amplitude bire-

fringence

We have seen in the previous chapter that amplitude birefringence affects GWs when propa-
gating from the source to the detector. The amplitudes of right versus left polarized modes
are exponentially enhanced or suppressed during propagation. Following Okounkova et al. [16],
the strength of amplitude birefringence can be expressed in terms of an opacity κ, while the
frequency dependency is ignored. In this formalism, it is assumed that the wavenumber k(t)
covers a narrow frequency range and thus can be approximated by a typical value in this range
k(t) ∼ k = 2πf , with f being a frequency value in the region of greatest sensitivity of the GW
detector.

In this formalism, the circular polarizations of GWs can be written as

hR = hGR
R e−κdC , hL = hGR

L eκdC . (2.1)

Here, dC is the comoving distance to the source (in units of length), which is connected to the
luminosity distance dL by dC = dL/(1 + z), where z is the redshift. The opacity κ has units of
inverse length and for κ = 0, GR is recovered. Beyond-GR effects have to be small enough for an
effective field theory treatment to be valid. Therefore, the assumption |κdC | � 1 is necessary.

Note the difference to the formalism presented in Chapter 1.2, where the amplitude correction
factor is given by δhA = exp(ρAπfκ̃). Here on the other hand, the frequency is assumed to be
constant and δhA = exp(−ρAκdC). The parameters κ and κ̃ can be related by assuming the
frequency to be constant as

κdC = −κ̃πf. (2.2)

2.1 Effective inclination angle

Expressions for the gravitational-wave strain h for right and left circularly polarized modes in
terms of the plus and cross polarizations have been given previously in Equation (1.9). In GR,
for non precessing inspirals the ratio of hR to hL is purely a function of the inclination angle ι of
the binary for the dominant angular mode (2,±2) and all higher modes with l = |m|, namely1

(
hR
hL

)
GR

=

(
1 + cosι

1− cosι

)2

. (2.3)

The geometry of a system is exactly face-on when cosι = 1 and the power is purely in the right
circular polarization hR. A system is exactly face-off when cosι = −1 and the polarization is
purely left circular hL. A binary system is also called face-on, when cos ι > 0, i.e. ι < π/2 and
face-off, when cos ι < 0, i.e. ι > π/2.

In the presence of amplitude birefringence, we have

1See Appendix A for a derivation and generalizations.
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11 Chapter 2. A formalism for gravitational-wave amplitude birefringence

(
hR
hL

)
biref

=

(
hR
hL

)
GR

e−κdC

eκdC
=

(
1 + cosι

1− cosι

)2

e−2κdC . (2.4)

A traditional GW parameter estimation based on GR would observe some effective inclination
angle ιeff because of the additional exponential factor in Equation (2.4)(

hR
hL

)
biref

=

(
1 + cosιeff

1− cosιeff

)2

. (2.5)

Thus, we can write

1 + cosιeff

1− cosιeff
=

1 + cosι

1− cosι
e−κdC . (2.6)

From a GW observational standpoint, amplitude birefringence effectively modifies the actual
inclination angle, leading to an apparent inclination angle ιeff that depends on the strength
of the observed amplitude birefringence, given by κdC . This interpretation of the amplitude
birefringence correction as inducing an effective inclination angle should be interpreted with
care when the actual inclination angle of the binary is close to 0 or π. In GR, the amplitude of
the gravitational-wave is a maximum, when the inclination is 0 or π. Amplitude birefringence,
however, leads to an enhancement or suppression of the amplitude depending on whether the
wave is right- or left-circularly polarized. When the amplitude birefringence effect suppresses
the GW amplitude, one can interpret this as an effective modification of the inclination angle
away from the maximum. However, when the birefringence effect enhances the amplitude, there
is no real apparent inclination angle that can mimic this effect, i.e. the effective angle would
have to be imaginary [8].

With Equation (2.6), the opacity parameter κ corresponding to fixed true and observed effective
inclination angles can be calculated as

κ =
1

dC
ln

(
(1 + cosι)(1− cosιeff)

(1− cosι)(1 + cosιeff)

)
. (2.7)

The inclination angle cosιeff observed by GW parameter estimation as a function of the true
inclination angle cosι and κ is given by

cosιeff =
−(1− cosι)eκdC + (1 + cosι)

(1− cosι)eκdC + (1 + cosι)
, (2.8)

or, alternatively, the true inclination given by the effective inclination is

cosι =
−(1− cosιeff) + (1 + cosιeff)eκdC

(1− cosιeff) + (1 + cosιeff)eκdC
. (2.9)

For κ > 0, the effective inclination angle becomes larger than the true inclination angle and
for κ < 0, it becomes smaller. The difference between the true and the effective inclination
angle, |ι− ιeff |, depends on the parameter κdC . Figure 2.1 shows the behaviour of κdC and ιeff

for different true inclinations. For larger viewing angles, |ι− ιeff | becomes larger, when keeping
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Figure 2.1: The parameter κdC governing the strength of amplitude birefringence, as a function of the resulting
change in the inclination angle. The different lines correspond to different true viewing angles Θ and on the x-axis
we have the difference between the effective viewing angle Θeff and the true viewing angle. For face-on systems,
the viewing angle is identical to the inclination angle and the y-axis on the left applies for κdC and for face-off
systems, the viewing angle equals the subtraction of the inclination angle from 180◦, and the y-axis on the right
applies for κdC .

|κdC | the same. Thus, the observed effect of amplitude birefringence is more prominent at larger
viewing angles. This behaviour can also be seen in Figure 2.2. The maximum of the allowed
values of |ι− ιeff | is largest for edge-on systems (ι ∼ 90◦).

Thus, to obtain the best constraints on |κ|, the inclination angle of the binary should not be
too small and the distance dC should be as large as possible.

Compact binary mergers with coincident EM observations (e.g. gamma-ray bursts and after-
glows) could allow for a determination of the distance to the source or the binary inclination
angle that is independent from GW parameter estimation. Therefore, such EM-bright binary
mergers can be used to investigate the effect of amplitude birefringence. The “true” inclination
angle and distance can be obtained from EM observations and, while fixing this EM distance in
a GW parameter estimation of the inclination angle2, the effective inclination can be obtained.
The difference between “true EM inclination” and “effective GW inclination” could be used to
constrain the amplitude birefringence parameter κ.

In order to understand how the inclination of a binary can be measured entirely independent
from the GW observation, we will have a look at electromagnetic counterparts of compact binary
mergers and the information that can be extracted thereof in Chapter 3.

2In Chapter 4 we will discuss the degeneracy of the inclination angle and distance in GW signals. This
degeneracy can be broken with an independent EM distance measurement, which leads to improved inclination
constraints.
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Figure 2.2: Effective inclination angle as a function of the true inclination angle with fixed κdC . The allowed
region with |κdC | < 1 lies between the black lines.

2.2 Effect on measurements of the Hubble constant with gravitational-
waves

As an additional comment we will briefly discuss the effect of amplitude birefringence on the
luminosity distance derived from GWs and how it translates to a determination of the Hubble
constant.

Birefringence changes the amplitude of the signal measured at the detector and thus the
inferred luminositiy distance to the source via3

dL,eff

dL
= 1 +

cosιeff(cos2ιeff − 5)

2(1 + cos2ιeff)
κdC +O(κdC)2. (2.10)

For a flat FLRW geometry, the luminosity distance can be written as [18]

dL =
1 + z

H0

∫ z

0

dz′

E(z′)
. (2.11)

A determination of the Hubble constant H0 using gravitational-waves from EM-bright binary
mergers to measure the distance while fixing the inclination angle and redshift with an in-
dependent measurement from an EM counterpart has been discussed by several authors (e.g.
[19, 20, 21]). Such a determination of the Hubble constant is discussed in the light of current
tensions between the two measurements by the Planck cosmic microwave background and the
SH0ES Cepheid-supernovae distance ladder surveys. It would offer an independent standard
siren without the assumption of a cosmological model and independent of a cosmic distance
ladder.

However, in the presence of amplitude birefringence the luminosity distance derived from
gravitational-waves is affected. Thus, the derived Hubble constant Heff

0 can be altered. The

3For a derivation of this expression, see [16].
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ratio of the effective Hubble constant to the “true” one can be written as

Heff
0

H0
=

dL
dL,eff

≈
(

1 +
cosιeff(cos2ιeff − 5)

2(1 + cos2ιeff)
κdC

)−1

. (2.12)

This ratio as a function of the observed effective viewing angle for different values of κdC is
shown in Figures 2.3 and 2.4. The effect vanishes for edge-on systems and is largest for face-on
systems and κ> 0 or face-off systems and κ< 0 at a viewing angle of ∼ 40◦.

Figure 2.3: Amplitude birefringence effect on a Hubble constant determined from the luminosity distance measured
with gravitational-waves, as a function of the effective viewing angle. For face-on systems, the effective inclination
angle is identical to the effective viewing angle and for face-off systems, ιeff = 180◦−Θeff . Plotted for different
values of |κdC | < 0.1.

Figure 2.4: Same as in Figure 2.3 but for different values of |κdC | > 0.1.



3 Electromagnetic counterparts of compact binary

mergers

Multi-messenger observations of compact binary mergers offer a unique opportunity to study a
range of physical and astrophysical processes using two different and almost orthogonal probes
− gravitational-waves and electromagnetic emission [21]. In particular, combining information
from the electromagnetic counterpart and the GW signal leads to better estimations of various
binary parameters. EM constraints on the distance and sky location of a binary merger can break
degeneracies between different parameters in the GW parameter estimation. Additionally, it is
possible to measure the inclination of a binary electromagnetically in binary neutron star (BNS
or neutron star-black hole (NSBH) mergers, if a relativistic jet is created after the merger and
if the afterglow light curve can be observed. The asymmetric masses in NSBH mergers further
allow for better inclination constraints from GWs.

In this chapter we will present the theoretical background in order to understand how the
inclination can be inferred from the EM counterpart of a compact binary merger. We first give an
overview of the outflow from compact binary mergers and its EM emission and then focus more
specifically on NSBH mergers. We will study the requirements for a NSBH merger to produce
an EM counterpart and examine its parameter space. Finally we look at the detectability of an
afterglow depending on the distance to the merger and its viewing angle.

3.1 Outflow from mergers and its electromagnetic emission

The main reference for this chapter is a review by Nakar [21], if not indicated otherwise.
A merger of a binary neutron star or a neutron star-black hole is expected to have sub-

relativistic and relativistic outflow components. The three major sources of the sub-relativistic
outflow are (i) tidal forces operating during the final stages of the inspiral and during the merger
and ringdown, (ii) shocks driven by the collision between the two binary members in the case
of a BNS, and (iii) winds from the accretion disk formed following the merger. All of these
sources involve decompression of highly dense neutron rich material, leading to nucleosynthesis
of r-process elements. The heavy nuclei formed in this process are not stable and therefore go
through a chain of beta-decay, alpha-decay and nuclear fission on their way to stability. This
radioactive decay provides a continuous source of heat that escapes as an ultraviolet, optical
and infrared radiation detectable for weeks and even months. This radiation is often called
kilonova (sometimes referred to as macronova in the literature) in the case of compact binary
mergers. The subrelativistic ejecta interacts with the circum-merger medium and produces a
radio remnant which may be detectable on a timescale of months to years. The properties of
the sub-relativistic ejecta depend on the nature of the binary (i.e. BNS or NSBH), the spins
and masses of the binary members, and the neutron star (NS) equation of state (EOS).

After the merger, some of the bound material settles into an accretion disk surrounding a
rapidly rotating central object, which may be a highly magnetized neutron star (magnetar) or a
black hole. In NSBH mergers the merged central object is a black hole (BH), where as in BNS
mergers, the nature of the central object depends on the total binary mass and on the NS EOS.
If the merged object is NS supported by rotation, it can collapse to a BH at any time. Both

15
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Figure 3.1: A schematic illustration showing the geometry of the relativistic jet that was launched following the
BNS merger GW170817. The successful jet (yellow) drives a cocoon (red) through interaction with the dynamical
ejecta (blue). This scenario is consistent with structured jet models. Shock-breakout of the jet from the ejecta
likely produced the γ-ray signal and the interaction of the cocoon with the ISM produced the early-time afterglow
emission (up to ∼ 2 months post-merger). The late-time afterglow emission is produced by the interaction between
the jet and the ISM. The total energy of the jet-cocoon is estimated to 1049 − 1050 erg (the isotropic-equivalent
energy to & 1052 erg) and the density of the circum-merger environment to 10−4 − 5× 10−3cm−3. The jet has a
narrow relativistic core with half-opening angle θjet . 5◦ pointing away from the Earth at a viewing angle angle
θobs ∼ 20◦. From Mooley et al. [24].

types of system - a rapidly rotating magnetar or a BH with a disk - are promising sources of
ultra-relativistic jets, such as those present in gamma-ray bursts (GRBs). These jets constitute
the relativistic outflow component expected in a compact binary merger.

Gamma-ray bursts are astrophysical transients with the defining feature being their non-
repeating, non-periodic prompt γ-ray emission. Within their broad range of properties, GRBs
can be separated into at least two sub-classes, short and long duration bursts [22]. GRBs
are exceptionally luminous cosmological explosions. A long GRB progenitor is a massive, low
metallicity star exploding due to core collapse. The GRB jet itself arises from rotation and can
be launched through different scenarios [23]. Short gamma-ray bursts (sGRBs) are expected
to be generated by BNS and NSBH mergers. This model is also supported by the detection of
sGRB afterglows.

The jet launched by compact binary mergers must penetrate through the sub-relativistic
ejecta covering the polar region, break out of the ejecta and release an intense burst of gamma-
rays. During the following interaction of the jet with the circum-merger medium, i.e. the
interstellar medium (ISM), the driven blast wave generates long lasting X-ray, optical and radio
afterglows. The extremely bright emission from the jet can be seen to high redshifts, but only if
the observer is placed within the opening angle of the jet. At large angles, the emission from the
jet is too faint for detection due to relativistic beaming. Since sGRB jets are most likely narrow,
only rarely are we expected to be able to see the jet directly in mergers that are detected by
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Figure 3.2: Schematic illustration of a structured jet with a strong angular profile beyond the jet core. An off-axis
observer (located at an angle θobs) receives emission from the less energetic material outside the jet core. From
Benjamini et al. [26].

their GW signal. Furthermore, the jet needs significant power to cross the entire sub-relativistic
ejecta successfully. In some mergers, the jets will fail to do so and get choked within the ejecta.
For this case of a choked jet, no direct detection by any observer is possible. Fortunately, also
when the jet is directed away from us or when it is choked, it can leave an observable imprint.

As a relativistic jet propagates through the sub-relativistic material it inflates a high pressure
bubble known as the cocoon. After braking out of the ejecta successfully, the jet together with
the engulfing cocoon form an outflow, that is spread over an opening angle much wider than the
opening angle of the jet itself. This entire outflow, known as the jet-cocoon, has mostly an angular
structure. The narrowly collimated core along the jet axis has high isotropic-equivalent energy1

and high Lorentz factor while outside of the core, the energy and Lorentz factor decrease with
angle. A jet-cocoon outflow is a specific type of a structured jet, illustrated in Figure 3.2. Emis-
sion that might be observable at distances where GWs are detectable and that is generated over
a wider angle is produced by the jet-cocoon via the following processes. Shock breakout (pro-
ducing a short flash of γ-rays), cooling emission (X-ray, UV and optical), radioactively powered
cocoon emission (possibly dominating the early macronova/kilonova emission) and interaction
with the circum-merger medium (producing an X-ray, optical and radio afterglow possibly seen
over a wide observing angle). Figure 3.1 illustrates the geometry of a jet-cocoon system.

A choked jet may also produce observable emission, if the jet deposits enough energy in the
cocoon before being choked. Then the cocoon can break out of the sub-relativistic ejecta and
produce emission via mostly the same processes as those of the successful jet-cocoon. However,
the cocoon outflow in that case is only mildly relativistic and no sGRB is seen.

3.2 Neutron star-black hole mergers

In this chapter, we focus on the characteristics of NSBH mergers and mainly present the findings
of Barbieri et al. [27, 28].

The final remnant in a NSBH merger is always a BH. For the fate of the NS however,
there exist two different scenarios. Either the neutron star plunges entirely into the BH, or it

1The isotropic-equivalent energy is computed under the assumption of an isotropically emitting source. It
depends on the angle between the jet axis and the line of sight and is obtained from the intrinsic jet structure
(Lorentz factor and kinetic energy). For more details see [25].
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Figure 3.3: The two different scenarios (direct plunge of the NS on the right, tidal disruption outside the ISCO
on the left) for a NSBH merger and its sub-relativistic ejecta. Dynamical ejecta are depicted above, the disc with
its wind and secular ejecta below. A time scale for the ejection of dynamical and secular ejecta is given on the
left. Rough estimates for the masses, velocities and electron fractions Ye of the ejecta are listed. From Nakar
[21].

is disrupted by the tidal field of the BH, leading to ejection of mass and the formation of an
accretion disc around the BH [29]. Which scenario takes place depends on the relative position
of the BH innermost stable circular orbit at a radius RISCO and the disruption radius Rdis, at
which the gravitational field of the BH induces the tidal disruption of the NS.

RISCO is determined by the BH massMBH and dimensionless spin parameter χBH = cJ/GM2
BH,

where J is the angular momentum of the BH, c the speed of light and G Newton’s constant.
RISCO decreases for smaller BH masses or larger prograde spins. If Rdis < RISCO, the tidal
disruption occurs too close to the BH leading to a direct plunge of the NS into the BH. No mass
is left outside and no EM counterpart is expected. If instead Rdis > RISCO, the NS undergoes
partial disruption, spreading neutron-rich matter in its surroundings. The tidal debris left out-
side of the remnant BH can be divided into two components: the gravitationally bound material
forming an accretion disc, and the unbound part called dynamical ejecta. In this case with
matter present outside the BH, EM emission is expected to emerge from a variety of processes.

These two evolutionary paths and the ejecta components of a NSBH merger are summarized
in a sketch in Figure 3.3.

The fate of the neutron star depends on the NS tidal deformability ΛNS and thus on the
equation of state for nuclear matter inside the NS, on the BH and NS mass ratio q = MBH/MNS,
and on the BH spin χBH. For a given NS mass, a “stiff” EOS leads to a larger NS radius, a
lower compactness and consequently to larger tidal deformability ΛNS compared to a “soft”
EOS. For all existing physically motivated EOS, low mass NSs correspond to the largest values
of tidal deformability. NSs never suffer a total tidal disruption. For one of the stiffest physically
motivated EOS (MS1) the remaining mass outside the remnant BH is . 40% MNS, as found
by [27]. Considering the likely more realistic SFHo EOS [30], the remaining mass outside is
. 32% MNS. This EOS is compatible with nuclear and astrophysical constraints and it associates
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Figure 3.4: Masses of the dynamical ejecta (left) and disc (right) in the MBH - χBH parameter space assuming a
NS with MNS = 1.4 M� and ΛNS = 330. White regions correspond to parameters leading to no mass left outside
of the BH, and therefore no EM counterpart. From Barbieri et al. [27].

to a NS of mass 1.4 M� a tidal deformability ΛNS = 334 and a radius of ∼ 12 km. This radius
is compatible with estimates of NS radii in the GW170817 signal analysis [31].

The NS is subject to partial disruption for larger values of ΛNS (corresponding to stiffer EOS
and low NS masses), low mass ratios q and high BH spins χBH. These quantities determine
the production of dynamical ejecta and discs, which are essential for EM emission from NSBH
binaries.

In Figure 3.4 it is shown how the production of dynamical ejecta and disc masses is affected
by the BH mass and spin, as calculated by [27]. It is clear that, with fixed MNS and ΛNS, more
mass is left outside the BH for faster spinning and less massive BHs (i.e. smaller mass ratios q).
White regions represent parameter combinations leading to a direct plunge of the NS, with no
mass left outside the BH and thus no EM counterpart. The spin vector of the BH is assumed to
be aligned with the orbital angular momentum such that the binary is non-precessing and the
NS spin is neglected2.

We have discussed that during the final phase of the inspiral, the NS can be partially disrupted,
leaving gravitationally unbound material (dynamical ejecta) and bound material forming an ac-
cretion disc around the remnant BH created after the merger. Additional outflows are produced
from the disc; the wind ejecta and the secular (viscous) ejecta. Furthermore, accretion onto
the BH in the presence of magnetic fields can power the launch of a relativistic jet, potentially
leading to the production of a short GRB. These outflows produce the EM counterparts. The
sub-relativistic ejecta power the kilonova emission and the relativistic jet produces the GRB
afterglow emission.

After the launch, the relativistic jet may in principle lose some energy upon interaction with
the ambient medium, i.e. the other merger ejecta. However, it is assumed that the jet is launched

2The NS spin is expected to be negligible for reasons outlined in [27].
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Figure 3.5: Illustration of the outflows and electromagnetic counterparts from a NSBH merger. The merger
remnant, a spinning black hole, is surrounded by an accretion disc and the various types of outflows. The upper
left quadrant of this sketch describes these outflow components and their launching mechanisms are stated in
the lower left quadrant. The non-thermal and thermal emission components that arise from the outflows (either
internally or upon interaction with the ISM) are listed in the upper and lower right quadrant respectively. From
Barbieri et al. [28].

in the polar direction, perpendicularly to the accretion disc. Thus the jets propagates through
very low density ejecta, since in NSBH mergers the dynamical ejecta lie close to the equatorial
plane. This is due to the absence of shocks in the NSBH case. Shocks, as generated in the BNS
case through the collision of the two stars, would produce a more isotropic ejection of matter.
The wind ejecta is the only outflow emitted along the polar direction, but it contributes only
very little mass. Therefore it can be assumed that the jet overcomes the ejecta and only spends
a negligible fraction of its energy, without consequences on its structure.

Regardless of the jet launching mechanism, it is natural to expect an angular distribution of
the kinetic energy per solid angle and of the Lorentz factor Γ in the jet. Indeed, as shown e.g.
by [32], a jet launched by magneto hydrodynamic (MHD) energy extraction from a spinning
BH naturally develops an angular structure of these two quantities. Both quantities decrease
approximately exponentially with the angular distance from the axis of the jet.

Barbieri et al. [28] developed semi-analytical models to predict the properties of the EM coun-
terparts of NSBH mergers. They present different light curves of the afterglow emission from
the jet for two sets of parameters (BH mass and spin) and for three different viewing angles.
The light curves for radio emission are shown in Figure 3.6. Brighter emission corresponds to
lower BH mass and higher BH spin, as in these cases more massive ejecta are produced during
the merger.
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Figure 3.6: Radio light curves (1.4 GHz) from GRB afterglow emission for three viewing angles (0◦ dot-dashed
lines, 30◦ filled lines, and 60◦ dashed lines) and the kilonova remnant (KNR, dotted lines). In the left panel for
constant χBH = 0.8 and varying MBH. Right panel for constant MBH = 5.3 M� and varying χBH. With fixed
parameters MNS = 1.4 M�, ΛNS = 330, luminosity distance dL = 230 Mpc, constant ambient medium density
n = 10−3cm−3. From Barbieri et al. [28].

The afterglow light curves show a high degree of degeneracy with respect to different com-
binations of binary parameters. It is not possible to infer the intrinsic parameters of the source
using only the EM multi-wavelength observations alone. However, the degeneracy can be bro-
ken by performing a multi-messenger analysis with joint GW and EM signals. For example,
as demonstrated in [28], by constraining the BH and NS masses from the GW signal and the
redshift from the EM counterpart, information on the BH spin can be extracted from light
curves. This is possible even in a very conservative setting in which the GW signal only pro-
vides information on the chirp mass, which may be the case in a GW detection with very low
signal-to-noise ratio.

3.3 Detectability of afterglows

Typical jet opening angels are found in the range of 5◦ − 10◦ [21, 33]. Given this small angle
at which the jet can be detected directly, the afterglow may be the only direct observation of
the relativistic outflow from NSBH mergers. The search for the afterglow depends on whether
there is a precise localization of the merger via the early isotropic kilonova signal [34]. Luckily,
kilonova emission from NSBH mergers can be more luminous than from BNS mergers, as they
can eject more material from the NS disruption [35]. In Figure 6 (panels a and b) of Barbieri et
al. [28] the kilonova light curves from NSBH mergers for different values of BH mass and spin
is shown. In all cases, the brightness of the peak flux is below ∼ 23 mag.

When such a localization is possible, sensitive radio telescopes and X-ray satellites can be
pointed towards this location to search for the afterglow. Sensitivity for blind afterglow searches
over the GW detection area will be lower, but may still be sensitive enough to detect the
afterglow [34].

We consider observers at angles much larger than the jet’s core Θ � θj , where the very
bright multi-wavelength emission from the relativistic jet is not detectable. The radio afterglow
detectability is most robustly predicted and easiest to detect. These results can be scaled to
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X-ray or optical observations [34]. Therefore, we will consider the detectability of the strongest
signal at the the peak of the afterglow light curve in the radio band. We assume that most
merger events will have an accurate kilonova localization, allowing for a higher sensitivity limit.
As an estimation of the detectability, the current detection limit of Karl G. Jansky Very Large
Array (JVLA) can be used, which is a limiting flux of Flim ≈ 10 µJy at a frequency of 3 GHz
[34].

Gottlieb et al. [34] have numerically determined a normalization for the analytic equation
for the peak flux from Nakar et al. [36] (their Equation 10), which now takes the form

Fν,p = 90

{
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(3.1)

In this expression, E is the jet’s total energy, n is the circum-merger density taken to be spacially
uniform, ν is the observed frequency of the afterglow, Θ is the viewing angle andD the luminosity
distance to Earth. The microphysical parameters that are least constrained are contained in the
terms in the curly bracket, εe and εB, the electron and magnetic field equipartition parameters.
These parameters depend only on the local conditions at the shock and describe the particle
acceleration and magnetic field amplification mechanisms. p is the power-law index of the

electron’s distribution and the normalization numerical factor g(p) ≈ 10−0.31p
(
p−2
p−1

)p−1
.

Equation (3.1) is normalized according to the values inferred for GW170817 but they can
be adapted to other cases. It is applicable as long as the considered frequency is above the
self absorption3 and below the cooling frequency4. Although we focus here on the afterglow
detectability in the radio band, as long as these conditions are fulfilled, the results can be
applied to optical and X-ray bands as well.

In Figure 3.7, the detection horizon of an afterglow, calculated with Equation (3.1), is shown
for a jet energy E = 1050 erg and a detection in the radio band at 1.4 GHz, with a limiting
flux Flim = 10 µJy. Coloured lines correspond to different circum-merger densities n. For
GW170817 it was found that the merger took place in a relatively low density environment of
n ≈ 10−3. Higher densities n & 10−2 seem to be rather common in sGRB sites [22] and enhance
the detectability of an EM counterpart. For densities below the critical density na ≈ 10 cm−3,
self absorption does not play a role and the analytic relation is valid.

We assume a power-law index of p = 2.3 consistent with the findings e.g. from [38], and
εe = 0.1, which has been shown to be typical by e.g. [39]. Since the parameter εB is less
well constrained (see e.g. [40]), we choose two different values for our calculations, a low value
εB = 10−4, and a higher value εB = 0.01 used by Barbieri et al. [28].

The total jet energy of E = 1050 erg is in good agreement with the case of χBH = 0.6,
MBH = 6 M�, MNS = 1.4 M� in Figure 3.6. When using the same microphysical parameters and
values for n and dL as in [28], the resulting peak flux at Θ = 30◦ calculated with Equation (3.1)
is 2.6× 10−2 mJy. This value is close to the light gray colored curve in Figure 3.6.

3At low frequencies, self-absorption causes a steep cut-off of the synchrotron spectrum in a relativistic shock.
The afterglow emission is well described as synchrotron emission from accelerated electrons when a relativistic shell
collides with an external medium [37]. When the electron density is high enough, radiated photons propagating
through the plasma scatter off synchrotron electrons, known as synchrotron self-absorption.

4Above the cooling frequency, cooling by synchrotron radiation is relevant and the electrons can lose a signifi-
cant fraction of their energy to radiation [37].
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Figure 3.7: The radio (1.4 GHz) afterglow detection horizon, for a limiting flux Flim = 10 µJy and a variety of
circum-merger densities (coloured lines). Also shown are the GW detection horizons of Advanced LIGO (black
lines) and Virgo (gray lines) with sensitivities of observation run O3 (dashed lines) and design sensitivity (solid
lines). A total jet energy of E = 1050 erg and parameters p = 2.3 and εe = 0.1 are assumed. In the left plot,
εB = 0.01 is used, in the right εB = 10−4. Thus, the same microphysical parameters are used on the left as in
Barbieri et al. [28] and for the lightcurves in Figure 3.6.

Black and gray lines in Figure 3.7 indicate the detection horizon of gravitational-waves for
Advanced LIGO and Virgo. The dependence of the GW detection horizon on the viewing angle
Θ can be approximated by (from Equation 26 of Schutz [41])

DGW(Θ) = D0

[(
1 + 6cos2Θ + cos4Θ

)
/8
]1/2

, (3.2)

where D0 is the detection horizon of a face-on (Θ = 0) binary system. These values for D0 are
taken from Chen et al.’s [42] online calculator, which uses the detector sensitivities indicated
by [43]. We use the horizon distance, which is the farthest luminosity distance a merger could
ever be detected above a signal-to-noise ratio of 8 and a binary source with masses 6 M� and
1.4 M�.

For smaller viewing angles, the detection horizon of the afterglow is larger than that of
gravitational-waves, and it decreases rapidly with the angle.



4 Inclination angle measurements

We will investigate inclination measurements of binary systems as obtained from EM counter-
parts of the merger and from gravitational-waves. In the GRB literature, the inclination angle
is referred to as the viewing angle of the jet, which is the angle between the jet axis and the line
of sight of the observer [44]. It is assumed that the jet is launched along the angular momentum
axis of the remnant of a binary merger.

4.1 Measuring the viewing angle via an electromagnetic coun-
terpart

We proceed by presenting the results and discussion from Nakar and Piran [20] on afterglow
constraints on the viewing angle of BNS mergers. It applies also to EM bright NSBH mergers
producing a relativistic jet.

A popular method to determine the geometry of an EM-bright merger is based on model
fitting to the EM afterglow light curve1. In contrast to the kilonova light curve involving uncer-
tainties in many aspects, the afterglow light curve is based on rather clear physics. However, the
afterglow light curve alone is insufficient to determine the parameters of the geometry separately.
The reason is the intrinsic degeneracy in the shape of the light curve between the jet opening
angle θj , the viewing angle Θ and the Lorentz factor of the emitting region, Γ , as long as the
jet is relativistic. Since the Lorentz factor is determined by the unknown ratio of the jet energy
E and the circum-burst density n, by varying the value of this ratio, different geometries can
generate similar light curves.

In what follows we want to summarize the information that different observables carry. The
discussion is restricted to cases similar to GW170817, namely jets with angular structure pointing
away from the observer2, Θ > θj , where emission at and following the peak is dominated by
the jet core and the entire afterglow curve is on the same power-law segment. The constraint Θ
. 1 rad (Θ . 60◦) can be derived from the fact that the emission region is relativistic during
and after the peak. Otherwise the whole light curve structure would be different.

In such jets, the light curve peaks when the relativistically beamed emission cone of the
decelerating jet core spreads and starts to include the observer. Then the Lorentz factor satisfies
Γ × (Θ− θj) ≈ 1 and the peak time tp

tp ∝

(
E

n

)1/3

(Θ− θj) (4.1)

E/n is expected to vary by many orders of magnitude between different mergers. So without an
additional constraint on E/n, the peak time does not provide a measurement of the geometry.
Also the peak flux 3

1These light curves have been discussed in Chapter 3, especially in Figure 3.6 we have seen light curves at a
frequency in the radio band.

2This is usually the case, because typical jet opening angles are small, as mentioned in Chapeter 3.3. Therefore,
the probability that such a narrow jet is directed towards the earth is low.

3Symbols in this equation have already been discussed in Equation (3.1).
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Fν,p ∝ E n
p+1

4 ε
p+1

4
e Θ−2pν

1−p
2 D−2 (4.2)

depends on additional poorly constrained microphysical parameters and thus can not provide a
useful constraint on the viewing angle as well.

The rising phase of the light curve is determined by the viewing angle as well as by the
angular structure of the jet at large angles θ > θj . Observation of the rising phase provides only
loose constraints on the jet structure. Without an a priori knowledge of the functional form of
the jet structure, this phase provides no information on the system geometry.

At the peak of the light curve and the following rapid decline, the curve is dominated by the
core of the jet and is similar to the one seen by an observer along the jet axis. Thus, during the
declining phase, the light curve is independent of the viewing angle and the jet opening angle
and no constraints can be obtained for either of them.

A more subtle observable is the shape of the peak, as it can be estimated only for bright
enough events. The unknown detailed jet structure near the jet core, at θ ≈ θj , governs the exact
shape of the light curve close to the peak. Although this results in some freedom in modelling,
the observed peak width provides important information. More precisely, the time between the
peak and the beginning of the asymptotic decline, which is the moment when the decay becomes
comparable to the one seen by an observer along the jet axis. This time difference depends on
the ratio θj/Θ, where the peak width becomes wider with increasing value of θj/Θ, namely4

tp +∆tp
tp

≈

1 +
θj
Θ

1− θj
Θ


1/k

, (4.3)

where k specifies the power-law for the decay of the Lorentz factor of the emitting region,
Γ (t) ∝ t−k. This dependence of the peak width on the ratio θj/Θ is shown in Figure 4.1.

A different “second order” observable is the polarization of the radio emission, requiring
relatively strong signals for detection. Linearly polarized emission can be produced by a jet
emitting synchrotron radiation. The magnitude of the polarization depends on the unknown
magnetic field configuration within the emitting region. For observation at Θ > θj , the polar-
ization reaches a maximum when the core of the jet becomes visible, that is around the peak
time of the light curve. As discussed before, the peak time does not allow a determination of
the geometry and hence polarization measurements can not be used to this aim.

It may be possible to obtain additional constraints on the afterglow parameters in some merg-
ers. For example, the observed afterglow spectrum might enable an identification of character-
istic break frequencies, or a constraint on the external density might be obtained by observation
of the host galaxy at the location of the merger. In general, three different such additional
constraints are needed to determine the geometry. The model contains six free parameters (four
afterglow parameters and two for the system geometry, namely θj and Θ), where the light curve
provides three constraints (one constraint from each of the peak time, peak flux and peak width).

We have seen that from the afterglow light curve alone, the only quantity that can be obtained
on the system geometry is a constraint on the ratio of the jet opening angle and the viewing
angle. Additional information is needed to break the degeneracy between the system geometry

4For a simple derivation of this relation, see [20].
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Figure 4.1: Simulated light curves from jets with different jet opening angles θj and viewing angles θobs (named
Θ in this thesis). Curves in different colours show the dependence of the peak shape on the ratio θj/θobs, namely
that the peak width becomes wider for increasing value of θj/θobs. Two jets with different θj and θobs but same
ratio θj/θobs depicted in the same color (as solid line and circled line) have similar light curves as long as the
emitting region is relativistic. From Nakar and Piran [20].

and afterglow parameters. This can be achieved by an independent measurement of the Lorentz
factor. A useful option is measuring the superluminal motion of the centroid of the radio image
with VLBI (Very Long Baseline Interferometry) observations. This enables the determination
of the Lorentz factor at the time of the afterglow peak. The image of a relativistic jet seen
from some angle can move at an apparent superluminal velocity βapp > 1. The best and easiest
way to measure Γ is to obtain two VLBI images around the time of the light curve peak. At
this time, the apparent velocity of the image is βapp ≈ Γ and the image is seen at an angle
(Θ− θj) ≈ Γ with respect to the line of sight [24].

Alternatively, the degeneracy can be broken by late time observations of the light curve
transition to the sub-relativistic phase. At late time, the light curves from different jets deviate
from each other, because the sub-relativistic regime is reached at different times. In this regime,
the beaming becomes unimportant, leading to a more moderate decay rate. These observations
can reveal the earlier values of the Lorentz factor and thus allow a determination of the geometry.

Both of these methods describe ”second order” observables, meaning that they require a
bright afterglow with the observed peak flux being significantly higher than the detector thresh-
old. Thus, these measurements will only be possible for relatively rare events. A critical factor
necessary for a bright burst is obviously a relatively short distance, but the peak flux also de-
pends strongly on the viewing angle. A bright afterglow requires a relatively small viewing angle.
Another possible factor leading to a bright signal is a large circum-burst density.

In the case of GW170817, VLBI superluminal motion observation is the only information that
can be obtained to tightly constrain Θ or θj . Numerous attempts to estimate these angles using
the afterglow light curve alone resulted in a wide range of values. The inconsistencies of these
values are largely driven by the assumed arbitrary priors of the models taken in each study.
From analysis incorporating the VLBI data and including systematic uncertainties from mod-
elling [24], the 1σ error on the viewing angle can be estimated to ∼ 15%.

From this discussion we have learned that a determination of the viewing angle from the elec-
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tromagnetic spectrum is possible only for bright bursts. It is most effective for small viewing
angles. This is convenient since the error in the viewing angle, δΘ, is typically smaller for smaller
viewing angles and is translated to an error δcosΘ ≈ ΘδΘ. As an example, a 15% error on the
viewing angle measurement of Θ = 10◦ (20◦, 30◦) translates to an error δcosΘ ≈ 0.5% (2%, 5%).
Thus a very precise determination of cosΘ can be expected at small angles. Although mergers
at small angles are relatively uncommon, the enhanced emission of GWs along the system axis
increases the number of observations.

4.2 Measuring the inclination with gravitational-waves

For compact binary mergers without independent redshift information from EM observations,
inclination constraints from GWs remain uninformative, unless the system is close to edge-on.
This follows from the distance-inclination degeneracy dominating the uncertainties for small to
moderate inclinations. The obtained constraints are then mainly driven by the priors. Usually,
the prior on the inclination angle is uniform on the sphere, i.e. isotropic, while the prior on the
luminosity distance is uniform in volume [45]. Assuming a homogeneous isotropic population
of sources in Euclidean space-time, an angle of 30◦ and 150◦ corresponds to the most likely
inclination angle of GW-detected binaries [41].

Using the polarization of GW signals, the inclination angle can be determined for close to
edge-on systems, for which the amplitude ratio between the two polarizations is sensitive enough
to be measured [20]. But GW emission from compact binaries is not isotropic, instead more
energy is emitted along the direction of the orbital angular momentum, while the least amount
is emitted parallel to the orbital plane. This implies that edge-on systems need to be extremely
close to be detectable [45].

Using information from an EM counterpart of a binary merger, mainly the redshift, can break
the degeneracy between the inclination and the luminosity distance. Although GW detectors
are able to measure the binary inclination angle ι, which also carries directional information on
the rotation of the binary, most EM observations only depend on the binary viewing angle [45].

Chen et al. [45] have studied the uncertainties in viewing angle measurements. They find that
if the sky positions and redshifts of BNSs can be identified via an EM counterpart and an
associated host galaxy, the uncertainty in the viewing angle for 50% of the systems could be
constrained to < 7◦ at 1σ. In this value, uncertainties in peculiar motion of the source and in
the Hubble constant are included and account for ∼ 1◦. A standard ΛCDM Planck cosmology
is assumed.

The above results were obtained by simulation of 1000 detections by Advanced LIGO-Virgo
at design sensitivity, with measured network signal-to-noise ratio greater than 12. The authors
use an approximate Bayesian estimator assuming that sky position, chirp mass and mass ratio
of the binaries are known.

To investigate how well the BNS’s viewing angle can be constrained for those sources with a
detectable GRB, Chen et al. [45] consider a subset of the simulated BNSs with inclination angle
smaller than 25◦. They find that 50% of the sources in this subsample have 1σ viewing angle
uncertainty of < 8◦, if their sky locations and redshifts are known.

For NSBH systems, the errors are smaller than for BNS systems. This is because for unequal
mass systems as in NSBHs there is more structure and information in the waveform as compared
to equal mass systems. In the gravitational-waveform, contributions from some of the harmonics5

5In Appendix A the decomposition of the gravitational-waveform into spherical harmonics is discussed.
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Figure 4.2: The posterior distribution of the luminosity distance DL and the inclination θJN of GW190412.
The indicated two d-dimensional area and the horizontal and vertical lines indicate the 90%credible regions. By
comparing models that include either the dominant multipole, higher multipoles without precession or higher
multipoles and precession, the great impact of higher multipoles on distance and inclination constraints can be
seen. Higher multipoles are present in the signals from binaries with asymmetric masses. From Abbott et al.[46].

vanish for symmetric systems such as BNSs, since these contributions are proportional to the
asymmetry of the system characterized by the mass ratio of the binary members. For NSBH
systems, Arun et al. [44] estimate a reduction of the error in the inclination angle by ∼ 60%
compared to BNSs, given a 3D localiziation (sky position and redshift) from EM information.

Fixing only the sky position leads to just slightly better constraints on the inclination com-
pared to the case where no EM information is used, for both BNS and NSBH systems. Only
information from 3D localization used in the GW parameter estimation can significantly reduce
the uncertainty in the inclination angle. Increasing the number of GW detectors also reduces the
errors, due to the enhanced sensitivity of a network. Additionally, more detectors with distinct
orientations help resolving the degeneracy between various angular parameters, which improves
the inclination angle measurement [44].

Figure 4.2 illustrates the discussed distance-inclination degeneracy and the effect of unequal
masses. The degeneracy between the luminosity distance and the inclination angle in the pa-
rameter estimation of GW190412 is presented. This binary black hole (BBH) system with
asymmetric masses shows evidence for higher multipoles in the signal. When using models that
include higher multipoles, much better constraints can be obtained for the inclination compared
to when using a model that includes only the dominant multipole. If additionally the distance
could be fixed, as it is possible with EM detections from NSBH mergers, even better inclination
constraints can be obtained.



5 Gravitational-wave data analysis

In this chapter we will follow [47].
Detecting GW signals in detector noise requires optimized statistical methods of signal extrac-
tion. Optimal methods are well developed for situations in which the detector noise is relatively
well characterized.

It is possible to construct an optimal detection statistic, when the statistical properties of the
noise process and the exact form of the signal are known. This optimal statistic is a quantity
that expresses the probability that the anticipated signal is contained in the data. Suppose that
the strain data s(t) recorded by a GW detector consists of a noise random process, n(t) and
possibly of a GW signal of known form h(t). We distinguish between two hypotheses:

Null HypothesisH0 : s(t) = n(t)

Alternative HypothesisH1 : s(t) = n(t) + h(t).
(5.1)

This is done by computing the odds ratio O(H1|s) = P (H1|s)/P (H0|s). This is the ratio of the
probability that the alternative hypothesis H1 is true, given the data s(t), to the probability
that the null hypothesis H0 is true given the data. To compute the odds ratio we need Bayes’
theorem.

5.1 Bayes’ theorem

First, we need to recall some definitions from probability theory. P (A) means the probability
that A is true, and P (A,B) is the joint probability that both A is true and B is true. The
conditional probability P (A|B) is the probability that A is true given that B is true and is
defined by

P (A|B) :=
P (A,B)

P (B)
. (5.2)

Now we can write Bayes’ theorem [48] as

P (B|A) =
P (B)P (A|B)

P (A)
, (5.3)

where P (B) is called the prior probability of B being true. P (A) is also known as the evidence
and acts as a normalization constant. P (B|A) is the posterior probability of B being true given
that A is true.

Bayes’ theorem can be expressed in a more convenient form by using the completeness relation
P (A) = P (A|B)P (B) + P (A|¬B)P (¬B) where P (A|¬B) is the probability of A given that B is
not true, and P (¬B) = 1− P (B) is the probability that B is not true.

Now we can express Bayes’ theorem as

P (B|A) =
P (B)P (A|B)

P (A|B)P (B) + P (A|¬B)P (¬B)
=

Λ(B|A)

Λ(B|A) + P (¬B)/P (B)
, (5.4)
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with

Λ(B|A) :=
P (A|B)

P (A|¬B)
(5.5)

being the likelihood ratio. Another form of Equation (5.4) is

O(B|A) = O(B)Λ(B|A), (5.6)

where O(B|A) := P (B|A)/P (¬B|A) is the odds ratio of B being true given A, and O(B) =
P (B)/P (¬B) is the prior odds ratio of B being true.

5.2 Matched filter

For the problem of detection, we wish to decide between the two hypotheses in Equation (5.1);
the null hypothesis H0 that there is no GW signal in the data, and the alternative hypothesis
H1 that there is a GW signal contained in the data. To do so, the odds ratio for the alternative
hypothesis given the observed data O(H1|s) needs to be computed. With Equation (5.6) this is
given by

O(H1|s) = O(H1)Λ(H1|s) ∝ Λ(H1|s) =
p(s,H1)

p(s,H0)
, (5.7)

where we have replaced the probabilities with probability densities. Since the prior odds ratio
O(H1) does not depend on the data, we are only interested in computing the likelihood ratio
Λ(H1|s).

We can compute the probability densities, if the noise is Gaussian. Recall that for a stationary
Gaussian noise process x(t), the probability density can be written as

px[x(t)] ∝ e−(x,x)/2. (5.8)

The noise-weighted inner product (a, b) of two time-series a(t) and b(t) is defined as [49]

(a, b) := 4 Re

∫ ∞
0

ã(f)b̃∗(f)

S(f)
df, (5.9)

where a tilde denotes the Fourier transform and an asterisk the complex conjugate. S(f) is the
power spectral density of the noise.

With this in mind, we can express the probability densities in Equation (5.7). Under the null
hypothesis H0, n(t) = s(t) and under the alternative hypothesis H1, n(t) = s(t)− h(t) and so

p(s|H0) = pn[s(t)] ∝ e−(s,s)/2,

p(s|H1) = pn[s(t)− h(t)] ∝ e−(s−h,s−h)/2.
(5.10)

Thus,
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Λ(H1|s) =
e−(s−h,s−h)/2

e−(s,s)/2
= e(s,h)e−(h,h)/2. (5.11)

We see that Λ(H1|s), and thus O(H1|s) depends on the data s(t) only through the inner product
(s, h). Since the odds ratio is a monotonically increasing function of this inner product,

(s, h) := 4 Re

∫ ∞
0

s̃(f)h̃∗(f)

Sn(f)
df (5.12)

is the optimal detection statistic. Any choice of threshold on the required odds ratio for accepting
the alternative hypothesis can be translated to a threshold on (s, h). This inner product is called
the matched filter [50], since it is essentially a noise-weighted correlation of the anticipated signal
h with the data s.

5.3 Parameter estimation

Normally, the exact form of the signal is unknown. The possible signals are characterized by a set
of parameters {λi}, which can be represented as a vector λ = [λ1, ..., λN ] in the N -dimensional
parameter space of signals. We now write the gravitational-wave signal as h(t;λ). To obtain the
optimal detection statistic in this case, we must integrate out or marginalize over the unknown
parameters. Now, the marginalized likelihood is

Λ(H1|s) =

∫
Λ(Hλ|s)p(Hλ)dλ, (5.13)

where Λ(Hλ|s) is the the likelihood ratio for a particular signal with parameters λ. H1 is the
alternative hypothesis that some signal is present and p(Hλ) is the prior probability distribution
that describes which parameter values are intrinsically more likely.

When a strong signal with parameters λtrue is present, the likelihood ratio Λ(Hλ|s) is usually
a strongly peaked function in parameter space with a value λmax at its maximum that is very
close to the true parameters. When considering Gaussian noise, the logarithm of the likelihood
ratio for a particular choice of parameters is

lnΛ(Hλ|s) = (s, h(λ))− 1

2
(h(λ), h(λ)). (5.14)

The maximum value of the likelihood ratio is achieved when(
s− h(λ),

∂

∂λi
h(λ)

)∣∣∣∣
λ=λmax

= 0. (5.15)

Solving this system of equations for λmax, the maximum likelihood statistic is given by Equa-
tion (5.14) with λ = λmax.

For simplicity we assume that the prior probability density is a relatively constant function over
the parameter ranges of interest, as it would be if we have little prior knowledge of the likely
values. To estimate the true values of the parameters λ we can therefore focus on finding the
maximum of the likelihood ratio, that is by solving Equation (5.14) for λmax.
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5.4 Measurement accuracy - Fisher information

We can now estimate our measurement accuracy. The detector data s(t) = n(t) + h(t;λ)
contains both noise and the gravitational-wave with the true parameter values λ. Substituting
into Equation (5.15), we find that(

h(λ)− h(λmax),
∂h

∂λi
(λmax)

)
= −

(
n,

∂h

∂λi
(λmax)

)
. (5.16)

The right hand side of these equations is a set of zero mean multivariate Gaussian random
variables. We will denote them by

νi :=

(
n,

∂h

∂λi
(λmax)

)
. (5.17)

To calculate the measurement accuracy, we need the distribution function of ν. We will follow
the derivation in [47].

The expectation value
〈
νi
〉

= 0 and the distribution of the random variables is entirely
described by the Fisher information matrix

Γ ij :=
〈
νiνj

〉
=

〈(
n,

∂h

∂λi
(λmax)

)(
∂h

∂λj
(λmax), n

)〉
=

(
∂h

∂λi
(λmax),

∂h

∂λj
(λmax)

)
, (5.18)

where the last equality was obtained using the relation 〈(n, g)(g, n)〉 = (g, g). Therefore, the
probability density function of the random variables ν can be expressed in terms of the Fisher
matrix as

p(ν) =
1√

det(2πΓ )
exp

(
−1

2
(Γ−1)ij ν

iνj
)
, (5.19)

with (Γ−1)ij being the inverse of the Fisher matrix.

Supposing that the signal is strong enough such that the maximum likelihood estimate of the
parameters λmax is reasonably close to the actual value of the parameters λ. Then the mea-
surement error ∆λ = λmax − λ is small and we can make an expansion

h(λ) = λmax −∆λi
∂h

∂λi
(λmax) +O

(
(∆λ)2

)
. (5.20)

Substituting this expansion into Equation (5.16) we obtain(
∂h

∂λj
(λmax),

∂h

∂λi
(λmax)

)
∆λj +O

(
(∆λ)2

)
= νi (5.21)

or

Γ ij∆λj ≈ νi. (5.22)
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Thus, by dropping terms of quadratic and higher order in the measurement errors we obtain the
linear relationship ∆λj ≈ Γ−1ν and the distribution function for the measurement errors is

p(∆λ) ≈

√
det

(
Γ

2π

)
exp

(
−1

2
Γ ij ∆λi∆λj

)
(5.23)

in the strong signal limit. This probability function shows that the inverse of the Fisher in-
formation matrix contains information about the variances of the measurement error in the
parameters as well as the correlation between the measurement errors for different parameters.
In particular, the root-mean-squared error in the parameter λi is

(∆λi)rms =
〈
(∆λi)

2
〉1/2

= (Var∆λi)
1/2 =

√
(Γ−1)ii. (5.24)

This Fisher information can be used to perform a systematic exploration of the N−dimensional
parameter space of GW signals in detector noise that improves our understanding of how well
we can constrain the properties of the sources of the signals.
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Results
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6 Estimations of κ for measurable effects of ampli-

tude birefringence

In this chapter we consider the parametrization from Okounkova et al. [16] presented in Chap-
ter section 2.1 to estimate the opacity parameter κ for measurable differences in the true and
effective inclination. As the effective inclination ιeff that is affected by amplitude birefringence,
measurements from GW parameter estimation are used. For the true inclination ι, a hypothet-
ical inclination measurement ιEM from an EM counterpart is considered. The distributions for
ιEM and ιeff are used to probe the parameter space of κ in which observable differences between
EM and GW measurements of the inclination are expected. The two distributions are considered
to be distinguishable when the 90% credible intervals (C.I.) no longer overlap. The hypothetical
distribution of ιEM is calculated such that this condition is fulfilled.

The distribution ιEM is modelled as a Gaussian distribution with standard deviation of 15%
or 10% of its mean value. As outlined in Chapter 4.1, a standard deviation σ of ∼ 15% can be
estimated for the EM measurement of the inclination angle of GW170817 from the 2σ interval
reported by Mooley et al. [24]. This measurement is treated in some more detail in the coming
Chapter 6.2.2. Thus, a standard deviation of ∼ 15% is the accuracy seen in current inclination
estimates from EM counterparts. Deeper insights into the detailed physics of an EM-bright
merger and its outflows through further observations in the future and the improvement of
theoretical models will reduce this uncertainty in EM inclination determinations. This is the
reason for also considering a smaller standard deviation of 10%. The relative error in percent
reflects the ability to measure small viewing angles with better precision via an EM counterpart
than larger viewing angles.

The parameter κ is then calculated from the median values of the distributions ι = ιEM and
ιeff with Equation (2.7). This is the obtained lower limit of |κ| for which an observable effect of
amplitude birefringence could be seen with 90% confidence.

We apply this approach to two different GW events, namely GW190412 and GW170817.
Since for the latter an EM counterpart has been observed and from that the inclination inferred,
we will also use the real EM measurement to obtain a constraint on κ. Finally, we make some
more general considerations.

6.1 Event GW190412: Binary black hole with asymmetric masses

The event GW190412 [46] is the first observation of an unequal-mass black hole merger. A
∼ 30 M� black hole merged with a ∼ 8 M� black hole companion. Due to the asymmetric
masses, the signal contains imprints of higher multipoles. This gives more structure to the
waveform and better constraints on the source properties are inferred with signal models that
include higher multipoles.

The idea is to treat GW190412 as a hypothetical EM-bright NSBH merger1. This would
correspond to an overall mass scaling.

1Note that just recently, the first discovery of two NSBH mergers has been published [51]. In these events,
the posterior distributions of the inclination angle are bimodal and strongly correlated with luminosity distance.
Thus it is not possible to obtain informative constraints from these events that could be used for our analysis.
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Figure 6.1: Posterior distributions of the orbital inclination ι and inclination θJN of GW190412 for the three
different models described in the text. For the two models neglecting precession, the distributions are the same.
Dotted lines correspond to the Maximum Likelihood value of each distribution.

The results of the GW parameter estimation [52] contain data obtained from several runs
with different waveform models that were used to probe the source properties. Each of these
waveform models include different amounts of physics. We will look at the inclination constraints
obtained with waveform models from the EOBNR family. These models employ effective-one-
body (EOB) models that are constructed from numerical relativity (NR) information completing
an analytical inspiral-merger-ringdown description which builds on post-Newtonian (PN) and
black-hole perturbation theory. The short names of the three models we consider are “EOBNR”
(dominant multipole and no precession), “EOBNR HM” (higher multipoles and no precession)
and “EOBNR PHM” (higher multipoles and precession).

6.1.1 Orbital- and total inclination angle

We want to check how well the posteriors for the total inclination θJN and the orbital inclination
ι coincide for this particular event, which has marginal support for precession. Precession of the
orbit occurs in binaries with spins that are not aligned with each other. For precessing binaries,
L is not a stable direction but J is typically approximately constant throughout the inspiral

Figure 6.2: Posterior distributions of the inclination angles ι and θJN in the range [0,π/2]. Dashed lines correspond
to the median value of each distribution.
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[53]. In the absence of precession, θJN and ι are the same.
Figure 6.1 shows the posterior distributions of θJN and ι for the three models considered.

For the third model, which includes precession, the two posteriors are slightly shifted. All three
models show also some support for face-off orientations, for both angles. But clearly, a face-on
orientation of the binary is favoured. So we will focus on the posterior distributions in the range
[0,π/2] shown in Figure 6.2 in what follows.

The distribution for the model considering only the dominant multipole is rather uninforma-
tive. Its Maximum Likelihood value is so large that it is excluded by the other two models. The
distribution peaks around the most probable angle of 30◦ for GW-detected binaries discussed in
Chapter 4.2. Thus, this distribution is mainly driven by the priors and we will not consider it
further. Instead we focus on the posteriors from the two models that include higher multipoles.

6.1.2 Modelled true and observed effective inclination

Now the distribution of the orbital inclination ι of GW190412 is used to represent the measured
effective inclination angle.

The standard deviation of the Gaussian for the hypothetical true inclination angle is chosen
to be 10% of its mean value. A larger σ of 15% would lead to a value of |κdC | > 1 for the
two distributions to be separated. This is forbidden by our effective field theory treatment.
Even with a standard deviation of 10%, for the model neglecting precession it is not possible
to see a difference in the two distributions for values of |κdC | < 1. The posterior of ιeff from
GWs needed to be narrower, for the two distributions to be separated. For the model including
precession, the posterior distribution is narrower, and a difference between the true and effective
inclination can be seen for both positive and negative values of κ. These results are presented
in Figure 6.3. A value of κ > 1.48 Gpc−1 or κ < −1.51 Gpc−1 would be required for a GW
event like GW190412 and a joint EM inclination measurement with a 1σ uncertainty of 10% to
see the effect of amplitude birefringence.

The comoving distance used in the calculations is dC = 0.64 Gpc and is obtained from the
median values of the luminosity distance dL = 0.74 Gpc and the redshift z = 0.15 from the GW

Figure 6.3: The standard deviation of the Gaussian distribution of ιEM is 10% of its mean value. The posterior
distribution of the measured effective inclination ιeff is presented for the model including higher modes and
precession, “EOBNR PHM”. Vertical lines indicate 90% credible intervals. Left: κ = 1.48 Gpc−1, κdC = 0.95.
Right: κ = −1.51 Gpc−1, κdC = −0.97.



38 Chapter 6. Estimations of κ for measurable effects of amplitude birefringence

observation [46]. Using point values is justified under the assumption that for an event with an
EM counterpart we would have much better resolved values of these quantities, e.g. from galaxy
catalogues.

6.1.3 Modelled improved constraints on the effective inclination

To investigate the effect of improved constraints on the effective inclination angle from gravi-
tational wave observations, the posterior is modelled as a Gaussian distribution with reduced
width. The original width of the 90% credible interval of the posteriors for the higher-mode
models, is ∼ 24◦ for “EOBNR PHM” (including precession), and ∼ 33◦ for “EOBNR HM”. We
now take the latter and reduce the width by 30%, 40% and 50%. Then, a Gaussian distribution
centered at the median value of the original distribution with the reduced width is modelled
as the effective inclination, and κ and κdC calculated for the cases that the true and effective
distributions are just separated at their 90% credible intervals. If the original width is only
reduced by 20%, no separation is possible with κdC < 1. The obtained limits and the new
widths of the 90% C.I. for ιeff are summarized in Table 6.1.

An improvement in the inclination constraints from GWs is expected, when the distance to
the merger can be tightly constrained by an EM counterpart. This is demonstrated by the BNS
merger GW170817, where a fixed sky location and a tight distance prior from EM observations
were used in the GW parameter estimation to obtain a narrow constraint on the inclination
angle with a width of 22◦ at 90% probability2.

A reduction in the width of ιeff is also justified when considering future improvements to
GW detectors or next generation detectors, where signals will be detected with higher signal to
noise ratios.

If the uncertainty in the GW measurement of the inclination obtained with the waveform model
“EOBNR HM” including higher modes was improved by 40% , then for κ > 1.54 Gpc−1 (for a
1σ error of 15% on ιEM) and κ > 1.32 Gpc−1 or κ < −1.38 Gpc−1 (for a 1σ error of 10% on
ιEM) the GW and EM posteriors were separated by more than 90% probability for this type of
event. This case is shown in Figures 6.4 and 6.5.

2This event will be discussed in more detail in Chapter 6.2

Table 6.1: To examine improvements in the GW inclination constraint obtained with “EOBNR HM”, the original
width of the distribution is reduced by 30%, 40% and 50%. For each improvement we show the new width of the
90% C.I. of ιeff and the values of κ (in units of Gpc−1 ) and κdC for which the two distributions ιeff and ιEM are
just separated by their 90% credible intervals. Two different standard deviations of ιEM, namely 15% and 10%,
are used.
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Figure 6.4: The observed effective inclination angle is modelled as a random Gaussian distribution with the same
mean but width reduced by 40% compared to the posterior from parameter estimation for the model “EOBNR
HM”. The gaussian distribution for the true inclination has a standard deviation of 10% of its mean value.
Vertical lines indicate the 90% areas. Left: κ = 1.32 Gpc−1, κdC = 0.85. Right: κ = −1.38 Gpc−1, κdC = −0.89.

Figure 6.5: Same as in Figure 6.4 but with a standard deviation of 15% on ιEM. κ = 1.54 Gpc−1, κdC = 0.99.
For negative κ, a separation of the two distributions would require |κdC | > 1.

6.2 Event GW170817: Binary neutron star with observed elec-
tromagnetic counterpart

The GW detection of the first binary neutron star inspiral was made with GW170817 [54].
Additionally, tranient counterparts accross the EM spectrum have been observed. Here we
investigate the inclination constraints obtained using joint GW and EM information. Observa-
tions of the EM counterpart allowed for a determination of the sky location of the merger at
R.A. = 197.450374◦, decl. = −23.381495◦ [55]. Through identification of the host galaxy NG
4993, the distance can be obtained. A precise distance measurement of 40.7 ± 2.36 Mpc was
obtained based on surface brightness fluctuations of the host galaxy [56], which is independent
of an assumed value of the Hubble constant H0. Fixing the sky location in the GW parameter
estimation improves the constraints on the inclination angle of the binary only little. This is in
agreement with previous studies [44] exploring this correlation, as mentioned in Chapter 4.2. On
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the other hand, setting a gaussian prior on the luminosity distance centered at 40.7 Mpc with
a standard deviation of 2.36 Mpc results in significantly narrower posteriors on the inclination
angle, and also on the source-frame chirp mass. In Figure 6.6 we show inclination posteriors
obtained by [57] for three different cases; using only the GW data, fixing the sky location, and
fixing the sky location and setting a gaussian distance prior. For the inclination, a prior uniform
in cosι is used. This is the same prior as used in the analysis of GW190412.

Figure 6.6: Posterior probability distributions of the inclination angle with and without combined EM information.
Results for using only the GW signal are shown in black, results for fixing the sky location of the host galaxy
NGC 4993 in blue, and results for both fixed sky location and a gaussian distance prior in red. On the left, the
full posteriors are shown. Only the black distribution shows very little support also for angles < π/2. On the
right, the same distributions but in the range [π/2, π] are presented together with the 90% credible intervals (solid
lines) and median values (dashed lines). Posterior data provided by Finstad et al. [57].

6.2.1 Modelled true and observed effective inclination

As previously done, we estimate the opacity parameter κ for observable differences between a
hypothetical true inclination measurement from an EM observation and the effective inclination
measurement from the actual GW parameter estimation with fixed sky location and a distance
prior (in red in Figure 6.6). In Figure 6.7 the standard deviation of the modelled Gaussian
for the true inclination ιEM is 10% of the mean value of the viewing angle. In that case, κ
> 23.7± 1.4 Gpc−1 or κdC > 0.96 would lead to observable differences. The errors in the value
of κ originate from the uncertainties in dL and z.

A standard deviation of 15% leads to |κdC | > 1, violating the effective field theory assump-
tion. Also for a negative value of κ, we would need |κdC | > 1 for the two distributions to be
separated. Although for negative κ we have ιEM > ιeff and thus a small viewing angle for the
EM inclination (the binary is face-off) with a small error (in our analysis either 10% or 15% of
the mean of the viewing angle), at small true viewing angles the amplitude birefringence effect
is also small (cf. Figure 2.1). Therefore a large |κdC | > 1 would be needed for the distributions
to be separated.

For the other two cases of GW measurements, the black and blue posteriors in Figure 6.6
with broad distributions, we have |κdC | > 1 always.

The comoving distance dC = 40.3± 2.3 Mpc is obtained from EM observations of both the
luminosity distance dL = 40.7± 2.36 Mpc [56] and redshift z = 0.0099± 0.0009 [58].
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Figure 6.7: The standard deviation of the modelled Gaussian distribution of ιEM is 10% of its mean value. The
posterior distribution of the measured effective inclination ιeff is shown for the case with fixed sky location and a
Gaussian prior on the distance provided by [57]. Vertical solid lines indicate 90% credible intervals, dashed lines
indicate median values. A difference between the two distributions is obtained for κ = 23.7 ± 1.4 Gpc−1 and
κdC = 0.96.

6.2.2 Constraints on κ

The inclination angle of GW170817 has also been measured via the EM counterpart. By com-
bining information from the afterglow light curve with VLBI radio imaging, the best constraints
on the inclination can be obtained [21]. Mooley et al. [24] show through VLBI observations that
the compact radio source exhibits superluminal motion between two epochs post merger. This
measurement breaks the degeneracy between different models proposed to explain the afterglow
emission, and allows for a determination of the jet opening angle and the viewing angle. General
analytic considerations, largely independent of the jet structure, and a large set of numerical
hydrodynamic simulations are used to find the viewing angle in the range 0.25 < Θ < 0.50
rad (14◦ − 28◦), where the most likely value is Θ = 0.35 rad (20◦). In this range of viewing
angles, all of their models consistent with the VLBI data at 2σ are included. They find that
the systematic error from modelling is the dominant source of uncertainty. Therefore, this is
the most accurate measurement available of the viewing angle of GW170817, since other papers
that incorporated the VLBI data in their analysis considered only the statistical error of the
specific models they explored3.

In Figure 6.8 we show the GW data (for fixed sky location and distance prior [57]) together
with the EM constraint (by Mooley et al. [24]) on the inclination angle. Although the EM
signal can not deliver information on the orientation of the binary (i.e. face-on or face-off), the
GW data clearly indicates a face-off orientation. Thus the inclination angle can be computed
via ιEM = π−Θ, and so at 2σ we have 2.64 < ιEM < 2.89 rad (151.4◦ − 165.7◦), with the most
probable value at 2.79 rad (159.9◦). The GW data indicates ιGW = 147.9+12.4

−9.6 degrees at 90%
confidence [57].

These two inclination measurements can be used to place bounds on κ and constrain ampli-
tude birefringence. With Equation (2.7) and ι = ιEM as true incination and ιeff = ιGW as the
effective inclination potentially subject to amplitude birefringence, κ can be calculated. To place
an upper bound on κ, the lowest value from the EM range ι = ιEM = 2.64 rad, and the largest

3see [20] for a detailed discussion.
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Figure 6.8: Inclination constraints for GW170817 from GW parameter estimation [57] (denoted as ιeff with median
(dashed line) and 90% credible interval) and from EM observations [24] (with the most probable value (dashed
line) and 2σ range indicated by vertical lines). From these measurements, an upper bound κ < 20.2 Gpc−1 can
be obtained.

value from the GW 90% credible interval ιeff = ιGW = 160.3◦ = 2.798 rad is taken. With the
luminosity distance 40.7±2.36 Mpc (the error corresponds to the quadrature sum of statistical
and systematic errors reported in [56]) and redshift z = 0.0099± 0.0009 [58], κ is calculated to
κ = 19.1± 1.1 Gpc−1, when taking into account the errors on dL and z. Thus, we can place an
upper bound κ < 20.2 Gpc−1, where κdC < 0.77.

A lower bound on κ can not be obtained within the effective field theory regime |κdC | < 1.
The very close distance of GW170817 makes it difficult to probe amplitude birefringence and
place tight bounds on κ. Better constraints will be obtained for EM bright binary sources farther
away.

However, the large difference between the most probable inclination values from both mea-
surements is remarkable. When using these most probable values ιEM = 2.79 rad and ιeff =
147.9◦ = 2.58 rad, we obtain a value κ = −24.2 Gpc−1 and κdC = −0.97, which would be a
huge effect. But since the two distributions still overlap largely, κ= 0 can not be ruled out.

The event GW170817 with its GW and EM measurements of the inclination favours rather
negative values of κ. If κ < 0, the effective inclination in GW parameter estimation would be
smaller than the true inclination. This birefringence effect would be larger for face-off systems.
Thus, constraining κ or actually seeing an effect would best be possible with face-off systems, if
κ < 0.

6.3 More general considerations

We have looked at specific GW events so far, with given distance and median values of the
inclination. To investigate how estimations of κ for a measurable difference between the true
and effective inclination depends on the distance and median value of the true inclination,
we will look at this parameter space in the contour plots in Figure 6.9. We fix the width
of both distributions and determine the value of κ, such that the two distributions are just
separated. The width of the distribution for ιeff is fixed to the width of the 90% credible interval
of GW170817 (the posterior with fixed sky location and distance prior), namely to ∆ιeff = 22.0◦

[57]. For a Gaussian distribution of ιEM we estimate the width of the 90% credible interval as
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Figure 6.9: Contour plot for |κ| depending on the comoving distance dC and the true inclination ιEM for fixed
widths of the distributions of ιeff and ιEM.

∆ιEM = 0.206 rad (11.8◦) from the 2σ range reported by Mooley et al. [24] for GW170817
discussed above. ∆ιEM = 0.206 rad (11.8◦). We assume symmetric distributions and calculate
κ with Equation (2.7) and ι and ιeff being the values in the center of the range ∆ιeff and ∆ιEM

respectively.
Note that here we fix the width of ιEM for all angles and do not take into account that

measuring the inclination angle electromagnetically for close to edge on mergers is impossible4.
Also not taken into account here is that the accuracy of the GW measurement would decrease
with large distances when the amplitude of the signal decreases.

Still we can see the expected trends, namely that κ is smaller for larger distances or/and larger
viewing angles. At small viewing angles, κdC > 1 would be needed for the two distributions
to be separated. The smallest viewing angles Θ & 28.4◦ are allowed for face-on systems when
κ > 0 and for face-off systems when κ < 0.

To make an example, we pick a luminosity distance of 300 Mpc and redshift 0.07, resulting in
a comoving distance dC = 0.28 Gpc. For a median true inclination at ιEM = 30◦ and κ > 0,
or ιEM = 150◦ and κ < 0, the amplitude birefringence effect is seen for |κ| > 3.43 Gpc−1 and
|κdC | > 0.96.

Using instead a comoving distance dC = 0.37 Gpc corresponding to dL = 400 Mpc and
z = 0.09, we obtain |κ| > 2.62 Gpc−1 and |κdC | > 0.96.

For both distances, when ιEM = 30◦ and κ < 0, or ιEM = 150◦ and κ > 0, we can not apply
the formalism since |κdC | > 1.

To generalize further, we consider a wide range of widths of the effective inclination distribution
∆ιeff as a function of κdC in Figure 6.10. This is the maximum width for which the two
distributions ιeff and ιEM are separated, where the width ∆ιEM is the 90% C.I. The colours
of the plotted curves correspond to different mean values of the viewing angle of ιEM. These
distributions for ιEM are Gaussian with either a standard deviation of 10% (solid lines) or 15%
(dashed lines) of the viewing angle of their mean values.

4In Chapter 4.1 we discussed that only for Θ . 60◦ it is possible to observe an afterglow light curve with a
peak that carries information about the viewing angle.
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These plots show again the fact that the amplitude birefringence effect is larger for face-on
systems when κ > 0 and for face-off systems when κ < 0.

Figure 6.10: Width of the posterior distribution of the effective inclination angle ιeff as a function of |κdC | for
different values of the true viewing angle ΘEM. For face-on systems, the inclination angle is identical to the viewing
angle and for face-off systems, ιEM = 180◦−ΘEM. Solid and dashed lines correspond to a standard deviation for
ΘEM of 10% and 15% respectively.



7 Parameter estimation via Fisher information

To study more systematically how well one can constrain amplitude birefringence, we perform
a Fisher information analysis, as it is described in Chapter 5.4. For this aim we adapt a private
Mathematica code written by Chandra K. Mishra. This code was used by LIGO for the BNS
event GW170817 to test for waveform deviations from general relativity using a parametrized
waveform expansion and to place bounds on non-GR parameters. These are two-detector bounds
with the PSDs1 taken around GW170817 for each of the Advanced LIGO detectors (Livingston
and Hanford). The waveform is constructed with the source parameters from the GR production
parameter estimation runs. For each parameter we randomly select 1000 posterior samples.
We introduce a parameter for amplitude birefringence to the waveform and with the Fisher
information matrix calculate the expected 1σ deviation of this parameter from zero.

7.1 Expected trends

Using the formalism of Okounkova et al. [16] discussed in Chapter 2, we introduce an effective
inclination angle that depends on the true inclination angle and κdC . The original code is
working with a simplified Fourier domain waveform that does only depend on the intrinsic
parameters and the distance. To consider the dependency on the inclination angle, we compute
the plus and cross polarizations to obtain the new frequency-domain waveform h(f) = h+− ih×.
Using the inclination dependency of the dominant modes given in Equation (A.7) we can write

h+ =
1

2
(1 + cos2 ι)AeiΨ , h× = i cos ιAeiΨ . (7.1)

Then, the complex strain can be obtained as

h(f) = h+ − ih× = AeiΨ
[

1

2
(1 + cos2 ι) + cos ι

]
. (7.2)

By multiplying the waveform2 in the original code with this inclination dependent factor in
the square brackets, we reintroduce the inclination dependence that has been averaged over for
the original purpose of the code. By setting ι = ιeff given in Equation (2.8) we obtain the
dependency of the strain on the true inclination and the birefringence parameter κdC .

Initially, κdC is set to zero and its deviation from zero ∆(κdC) is obtained via Fisher infor-
mation. We model the true inclination as a Gaussian distribution with mean value 159.9◦ and
standard deviation 7.2◦, which corresponds to the EM measurement [24] of GW170817 discussed
in Chapter 6.2.2. The 1σ error in our estimation of κdC for this system as obtained from the
inverse of the Fisher matrix is shown in Figure 7.1. By taking the median value over all 1000
samples, we obtain an estimate of κdC = 0± 0.011. Using the comoving distance to GW170817,
dC = 40.3 ± 2.3 Mpc discussed in Chapter 6.2.1, we obtain a constraint on the error in the

1The PSDs have been fitted and are part of the private code.
2The original waveform is unimportant for our purposes. Our Fisher analysis of amplitude birefringence

depends only on our newly introduced factor.
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Figure 7.1: The distribution of ∆(κdC) as obtained from Fisher information. For the source parameters, the
original posterior distributions from GW170817 are used.

opacity parameter ∆κ = 0.27± 0.02 Gpc−1 that would translate to an upper bound |κ| < 0.29
Gpc−1.

We investigate possible trends in ∆(κdC) when varying the extrinsic parameters of the binary.
In particular, we use different values for the mean µ and standard deviation σ of the Gaussian
distributions for the true inclination and the signal-to-noise ratio (SNR). The resulting distri-
butions in ∆(κdC) when changing the SNR and keeping the other parameters fixed are shown
in Figure 7.2 and when changing the true inclination while fixing the other parameters is shown
in Figure 7.3. The 1σ uncertainty in our Fisher estimation of ∆(κdC) for all these cases is
presented in Table 7.1.

As expected, ∆(κdC) decreases with increasing SNR. In Fisher information, the measurement
error is proportional to 1/SNR, which is confirmed by our data. The uncertainty in the SNR,
i.e. the width of the distribution, has no effect on the median value of ∆(κdC) but only on the

Figure 7.2: Changing the SNR in the Fisher analysis of the error in κdC , that is its deviation from zero, ∆(κdC).
In the title of each subplot we show the mean µ and standard deviation σ of the modelled Gaussian distribution
for the SNR. The other parameters are fixed to the posterior distributions from GW10817, whereas the original
SNR has a median of 32.424 and standard deviation 0.073. Dashed lines indicate the median values of ∆(κdC)
over all 1000 samples.
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Figure 7.3: Same as in Figure 7.2 but for changing the true inclination instead of the SNR. The original true
inclination inferred from the EM counterpart of GW170817 is modelled as a Gaussian distribution with mean and
standard deviation 159.9◦ ± 7.2◦.

spread of the individual samples.
When changing the true inclination we observe a decrease in ∆(κdC) with inclination. This

behaviour has not yet been fully understood at the time of writing. According to Equation (7.2)
the amplitude decreases with inclination. We expect this reduced signal to translate to a de-
crease in effective SNR, which should lead to a decrease in mesurability of ∆(κdC). From these
considerations we expect that an increasing true inclination, and thus increasing ιeff , would re-
sult in larger errors ∆(κdC). This is the opposite behaviour of what is seen in our results from
the code.

As in the previous case, the width of the distribution of the true inclination does not change
the median value of ∆(κdC) but is directly related to the spread of the individual samples only.

SNR inclination ∆κdC

32.424 ± 0.073 159.9◦± 7.2◦ 0.011
10 ± 0.073 159.9◦± 7.2◦ 0.036
60 ± 0.073 159.9◦± 7.2◦ 0.0061
100 ± 0.073 159.9◦± 7.2◦ 0.0036
32.4 ± 0.02 159.9◦± 7.2◦ 0.011

32.4 ± 5 159.9◦± 7.2◦ 0.011
32.424 ± 0.073 30◦± 3◦ 0.16
32.424 ± 0.073 90◦± 7.2 0.022
32.424 ± 0.073 150◦± 3◦ 0.012
32.424 ± 0.073 150◦± 1.5◦ 0.012
32.424 ± 0.073 150◦± 4.5◦ 0.012

Table 7.1: Results from Fisher analysis of the estimated deviation of the amplitude birefringence parameter from
zero, ∆(κdC). The original distributions of the SNR and true inclination for GW170817 are shown in the first
line as mean ± standard deviation. By varying each of these distributions separately, we observe the resulting
trends in ∆(κdC).
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Since our Fisher parameter κdC appears in a frequency independent scale factor on the overall
amplitude of the waveform, we have that ∆(κdC) varies only when changing the true inclina-
tion or the SNR. Therefore, using Fisher information, the error in the birefringence parameter
∆(κdC) is independent of the exact form of the waveform but only depends on our introduced
amplitude factor and the SNR. This is because Fisher information captures only first order
effects in the high SNR limit [59]. To see an effect from more subtle features like improved
constraints on the observed inclination from asymmetric masses, as well as from independent
EM distance constraints and improved independent constraints on the true inclination angle
(from a hypothetical EM counterpart), a beyond Fisher formalism or full Bayesian parameter
estimation would be required.

7.2 Frequency dependent amplitude birefringence

Using the formalism for amplitude birefringence described in Chapter 1.2 that maintains the
original frequency dependence of the correction terms, we can write

hR = hGR
R eπfκ̃, hL = hGR

L e−πfκ̃. (7.3)

Now we obtain the complex strain with the relations for h+ and h× given in Equation (1.9) as

h+ − ih× = (hGR
+ − ihGR

× ) eπfκ̃. (7.4)

Therefore, we can multiply the original waveform in the Fisher code with the factor eπfκ̃ to
obtain the parity violating waveform with parametrized deviations from GR encoded in κ̃.
Now the estimated error in κ̃, i.e. its 1σ deviation from zero ∆κ̃, is sensitive to changes in the
frequency dependency of the waveform amplitude (the original amplitude of the GR waveform is
proportional to f−7/6) in addition to changes in the PSD or the SNR. The resulting distribution
of ∆κ̃ from 1000 samples using the original parameters for the SNR and PSD from GW170817 is
shown in Figure 7.4. The distribution of ∆κ̃ with median and standard deviation is obtained as
∆κ̃ = 4.239± 0.009× 10−5 seconds. This allows us to estimate an upper bound |κ̃| < 4.2× 10−5

seconds.

Figure 7.4: The distribution of ∆κ̃ obtained from Fisher information with parameter values from GW170817.
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With this constraint on κ̃ we can calculate an upper bound on the Chern-Simons length scale
l0 for a canonical field profile via Equation (1.30). We adopt a Planck cosmology with present
day Hubble constant H0 = 67.8 km/s/Mpc [60] and use the comoving distance to GW170817,
dC = 40.3±2.3 Mpc discussed in Chapter 6.2.1. Using these values we estimate an upper bound
on the Chern-Simons length scale l0 < 4.9× 102 km. A thorough discussion of existing bounds
on amplitude birefringence and their mapping on to a Chern-Simons length scale can be found
in [5].

Since our Fisher information on ∆κ̃ does not depend on the phase of the waveform, but only
on our κ̃-dependent amplitude factor, we can explore constraints on l0 with different comoving
distances to the source and different SNRs. In Figure 7.5 we show the upper bound on the
Chern-Simons length scale l0 as a function of the comoving distance for different values of the
SNR. The trend is clear; l0 can be better constrained for increasing SNR and/or increasing
distance. To conclude, Fisher information suggests that tighter bounds on l0 can be placed
for louder and further events, where the quantitative dependence on SNR and dC is shown in
Figure 7.5.

Figure 7.5: Upper bound on the Chern-Simons length scale l0 for the canonical CS field profile as a function of
the comoving distance, for different values of the signal-to-noise ratio (SNR).



Conclusion

Gravitational parity violation changes the amplitude and phase of the circular polarizations of
gravitational-waves, which is called amplitude and velocity birefringence respectively. In parity-
violating gravity theories that predict amplitude birefringence, such as Chern-Simons gravity,
the amplitudes of the right- and the left-circularly polarized GW modes are either enhanced
or suppressed during propagation. This amplitude correction is degenerate with the inclination
angle, the distance and location of the source in the sky [4]. Amplitude birefringence leads to
an apparent change in the inclination of a binary system as observed by GW detectors, which
is strongest at large viewing angles. The inclination of a binary as measured with GWs can
be better constrained when the binary component masses are asymmetric or when the distance
and sky location is obtained from an independent electromagnetic measurement. This makes
EM-bright neutron star-black hole binary mergers interesting sources for studying amplitude
birefringence, because the correction is not degenerate with other parameters in the model [10].

If an EM counterpart is produced in a NSBH merger, its distance, sky location, and possibly
its inclination can be inferred electromagnetically. In a subsequent GW parameter estimation,
these parameters can be fixed or appropriate priors specified. Using waveform templates that
include a parameter that characterizes the strength of birefringence it is possible in principle to
place constraints on parity violation.

Another source for multi-messenger observations of compact binary mergers are binary neu-
tron stars. Gravitational-waves, a coincident short gamma-ray burst and other transient coun-
terparts across the EM spectrum have been observed for GW170817, the first detection of GWs
from a BNS. These EM counterparts allowed for a determination of the sky location, and the
distance to the source was obtained through identification of the host galaxy. Furthermore, an
EM determination of the inclination angle has been achieved.

An EM counterpart is only produced in NSBH mergers, if the neutron star is tidally disrupted
and an accretion disc is formed around the remnant black hole. Such a tidal disruption taking
place outside of the innermost stable circular orbit of the BH is expected for highly spinning,
low mass BHs. An examination of the parameter space suggests that BHs with masses around
∼ 6 M� and dimensionless spins around ∼ 0.6 would be required.

After the merger of both types of systems, NSBHs and BNSs, mass accretion onto the
remnant BH can power the launch of a relativistic jet along the angular momentum axis of
the remnant, potentially leading to the production of a short GRB. Long lasting X-ray, optical
and radio afterglow emission is produced during the interaction of the relativistic jet with the
interstellar medium. Observation of the afterglow light curve (i.e. the flux observed with time at
a specific frequency) can allow for a measurement of the inclination angle of the binary system.
In most cases, the jet is directed away from us at a certain viewing angle. The larger the viewing
angle and distance to the binary merger, the fainter is the observed afterglow.

If one aims for an EM determination of the viewing angle of BNSs or NSBH binaries, the
viewing angle and distance should not be too large, otherwise the afterglow would not be de-
tectable. On the other hand, the apparent change in the inclination angle encoded in GWs
caused by the birefringence of polarizations is larger at larger viewing anlges. Therefore, a bi-
nary at a moderate viewing angle of ∼ 30◦ seems ideal for testing GW amplitude birefringence
via EM and GW inclination constraints.
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Adapting a formalism from [16] we try to constrain a parameter κdC that measures the relative
suppression/enhancement between the right-handed and left-handed polarizations of the GW as
an effect of parity violations on the observed inclination angle, where dC is the comoving dis-
tance to the source. We estimate how large the birefringence effect, characterized by κdC , would
need to be in order to observe a measurable difference in the effective and the true inclination.
The true inclination constraints are assumed from a hypothetical EM counterpart whereas the
effective inclination constraints are obtained from GW parameter estimation results of two dif-
ferent events, namely GW190412 with asymmetric BH masses and the BNS merger GW170817
with actual independent EM distance and inclination constraints. We treat GW190412 as a
hypothetical NSBH merger with an overall mass scaling. The mass ratio of the black holes in
GW190412 is similar to that of EM-bright NSBH mergers. This asymmetry allows for a reason-
ably well constrained inclination measurement from the GW observation, due to the presence
of higher order multipole moments in the signal. Note that we do not consider the two NSBH
coalescences, whose detection has just recently been published [51], because their inclination
posteriors are bimodal and strongly correlated with the luminosity distance. Thus they do not
provide informative constraints that can be used in our analysis.

For both systems, we estimate that |κdC | > 0.95 would be required to have the effective and
true inclination distributions separated at their 90% credible intervals. Even from investigations
of improved constraints on the GW measurement of the effective inclination we find that for a
directly observable effect |κdC | > 0.76 is needed in the case where the width of the 90% C.I. is
reduced by 50%. Still it is possible to place an upper bound on |κdC | from the actual GW and
EM measurements of the inclination of GW170817, that is κdC < 0.77. Using the comoving
distance dc = 40.3 ± 2.3 Mpc as obtained from EM observations, we obtain an upper bound
κ < 20.2 Gpc−1.

We then pursue a Fisher analysis that enables us to make more general statements on the
mesurability of birefringent effects and that is not restricted to available GW data. This al-
lows us to probe also the dependence on the signal-to-noise ratio. Fisher information can be
used to estimate the measurement errors on parameters of GW signals in detector noise and
improves our understanding of how well we can constrain the source properties of signals. Via
Fisher information we estimate the measurement error in κdC , namely its 1σ deviation from
zero. Using the posterior distribution from parameter estimation of the SNR of GW170817 and
the true inclination as obtained from the EM counterpart, we estimate a measurement error
∆κdC = 0.011. This expected error around zero is much smaller than the values at which a
separation of the effective and true inclination could be observed at 90% confidence. From this
we conclude that even in the case of well constrained inclinations from GWs, with independent
EM observations of the distance and sky location and in unequal mass binaries, it would not be
possible to see the effect of birefringence through distinguishable measurements of the effective
and true inclination.

An inaccuracy of the order of ∆κdC < 0.011 (in an underlying assumption of non-existent
birefringence effects) would translate to an error in the Hubble constant as measured via GWs
of less than ∼ 1%. This means that, particularly for the Hubble constant measurement with
GW170817, such an inaccuracy would not have affected the measurement of the Hubble constant
considerably.

We also use Fisher information in a frequency dependent, an thus more general formalism of
amplitude birefringence. This time, we introduce the birefringence effect characterized by κ̃ not
via an apparent inclination angle to a GR waveform, but by directly implementing the parity
violated left- and right-polarized modes. Since the amplitude correction factor to the waveform
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is frequency dependent and so is its derivative with respect to κ̃, we have that the Fisher Matrix
element that gives the estimated error ∆κ̃ now depends on the noise power spectral density of
the detectors, in addition to the signal-to-noise ratio. When taking the PSDs of the two LIGO
detectors around the time of GW170817 and the posterior distribution of the SNR for that
event, an error estimate of ∆κ̃ = 4.2×10−5 seconds is obtained. Using this as a constraint on κ̃,
we estimate an upper bound on the Chern-Simons lenght scale for a canonical CS field profile,
that is l0 < 4.9× 102 km, where the comoving distance to the binary is assumed to correspond
to the one obtained for GW170817. Since the estimated parameter errors in Fisher information
are proportional to 1/SNR, we can scale our bound to different SNRs and use different distances
in our calculation of l0 from κ̃. We then obtain Fisher estimations of an upper bound on the
Chern-Simons length scale depending on the SNR and distance.

Outlook

Fisher information captures first order effects in the high SNR limit. We could wish for more
realistic estimates of bounds that can be placed on amplitude birefringence that depend on
the binary parameters such as the masses, mass ratio and distance, and in particular on how
well each parameter can be constrained. This could be obtained from a simulated parameter
estimation, with assumed EM distance prior and fixed sky location.

If an independent inclination constraint from an EM counterpart is assumed, one could
implement an effective inclination depending on κ̃ and the true inclination in a GR gravitational-
wave template to model the birefringence effect. These templates can be used for injections of
fake GW signals into real or simulated noise. The simulated GW data can then be interpreted
via GR source parameter estimation, i.e. with a template model that does not include κ̃, to
study the recovery of the observed inclination angle depending on κ̃.

Alternatively, one could use a parity violating waveform template from the expressions for
the plus and cross polarizations that depend on κ̃ to study the recovery of κ̃ from the fake GW
data for different injected values of κ̃.

This analysis could be applied to the actual GW data from GW170817. Estimating the param-
eters with a fixed sky location and a distance prior as obtained from the EM counterpart with a
waveform template that includes the birefringence parameter κ̃, one could estimate κ̃ and place
bounds on amplitude birefringence. This bound could then be used to constrain alternative
gravity theories.

Observation of a strong GW signal and an EM counterpart from a real NSBH coalescence,
where the sky location and distance can be tightly constrained electromagnetically, would allow
for strong bounds to be placed on amplitude birefringence.

A different experimental verification of amplitude birefringence is proposed by [4]. The effect
of amplitude birefringence on the long GW signals of cosmologically distant inspiraling massive
BBH systems, that will be observed with the space based GW detector LISA, would be an
apparent time dependent change in the inclination angle. Sufficiently long observations of such
a binary system will enable this apparent rotation to be distinguishable from precession.



A Spherical harmonic decomposition of the gravitational-

wave polarizations

In GW theory, it is efficient to work with the complex valued quantity h = h+ − ih×, a combi-
nation of the two polarizations of gravitational-waves h+ and h×. From the perspective of an
observer, h can be expanded into multipole moments using spherical polar coordinates. The −2
spin-weighted spherical harmonics −2Ylm are the simplest appropriate harmonic basis [46]. In
this basis, the multipolar decomposition can be written as [61]

h+ − ih× =
∑
l≥2

l∑
m=−l

−2Ylm(ι, φc) hlm, (A.1)

where the coefficients hlm are the radiative multipoles depending on the source properties and
φc is the coalescence phase. For non-precessing binaries, h̃+ and h̃× can be expressed in the
Fourier domain, where gravitational-wave data analysis is usually done, as1

h̃+(f) =
1

2

∑
l≥2

l∑
m=−l

[
−2Ylm(ι, φc) h̃lm(f) + −2Y

∗
lm(ι, φc) h̃lm(−f)∗

]

=
1

2

∑
l≥2

l∑
m=1

[
−2Ylm(ι, φc) + (−1)l−2Y

∗
l−m(ι, φc)

]
h̃lm(f)

h̃×(f) =
i

2

∑
l≥2

l∑
m=−l

[
−2Ylm(ι, φc) h̃lm(f)− −2Y

∗
lm(ι, φc) h̃lm(−f)∗

]

=
i

2

∑
l≥2

l∑
m=1

[
−2Ylm(ι, φc)− (−1)l−2Y

∗
l−m(ι, φc)

]
h̃lm(f).

(A.2)

The spherical harmonics for the dominant (2,±2) modes are

−2Y22 =
1

2

√
5

π
e2iφc cos4

( ι
2

)
−2Y2−2 =

1

2

√
5

π
e−2iφc sin4

( ι
2

)
.

(A.3)

With these expressions and using the formulas [62]

sin
(x

2

)
= ±

√
1− cosx

2
and cos

(x
2

)
= ±

√
1 + cosx

2
(A.4)

one finds that for the dominant mode

1For a more detailed discussion see Appendix A of [61].
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h̃+(f) =
1

4

√
5

π
e2iφc 1

2
(1 + cos2 ι) h̃22(f)

h̃×(f) =
i

4

√
5

π
e2iφc cos ι h̃22(f).

(A.5)

Simple general expressions for h̃+ and h̃× for non-precessing binaries are given by [61] as

h̃+ =
do
dL

∑
l≥2

l∑
m=0

Alm+ (ι)eimφc h̃lm(f)

h̃× =
do
dL

∑
l≥2

l∑
m=0

Alm× (ι)ieimφc h̃lm(f),

(A.6)

where do is a distance used to normalize the waveforms h̃lm. The amplitudes Alm are functions
only of the inclination angle. For the most significant harmonics, they are given as [61]

A22
+ =

1

2
(1 + cos2 ι)

A22
× = cos ι

A21
+ = sin ι

A21
× = sin ι cos ι

A33
+ = sin ι (1 + cos2 ι)

A33
× = 2 sin ι cos ι

A44
+ = sin2 ι (1 + cos2 ι)

A44
× = 2 sin2 ι cos ι.

(A.7)

There is a freedom to choose an overall normalization for these amplitudes, which corresponds
to an overall rescaling of the waveform h̃lm. It is customary to choose a normalization such that
A22

+ = A22
× = 1 for face-on systems, when ι = 0. This is the normalization used here, which is

different from the convention used before.

It is straight forward to see that for the dominant harmonic (l = 2,m = ±2) we can write
[63, 64]

h̃+ =
1

2
(1 + cos2 ι)AeiΨ

h̃× = cos ι AieiΨ = cos ι Aei(Ψ+π/2)
(A.8)

with an amplitude A and phase Ψ , which is consistent with Equation (A.5). A derivation of h+

and h× for a quadrupole source is given e.g. in [65].

Using these expressions in hR = (h+ − ih×)/
√

2 and hL = (h+ + ih×)/
√

2 one can easily derive
Equation (2.3)

hR
hL

=
h+ − ih×
h+ + ih×

=
(1 + cos ι)2

(1− cos ι)2
. (A.9)
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This result applies also for all higher harmonics with l = |m| as can be seen from the amplitudes
All given in Equation (A.7). For the sum over all modes with l = m in Equation (A.6), we
obtain

h̃+ =
do
dL

1

2
(1 + cos2 ι)

[
ei2φc h̃22 + 2 sin ι ei3φc h̃33 + 2 sin2 ι ei4φc h̃44 + ...

]
h̃× =

do
dL

cos ι i
[
ei2φc h̃22 + 2 sin ι ei3φc h̃33 + 2 sin2 ι ei4φc h̃44 + ...

]
,

(A.10)

where the terms in square brackets are the same for both polarizations and the usual depen-
dence on ι seen for the dominant mode in Equation (A.8) factors out. Thus, when evaluating
Equation (A.9) the terms in the square brackets cancel and we obtain the simple dependence
on cos ι.
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