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Work in the group of physical systems biology and
non-equilibrium soft-matter is concerned with the
study of developmental biology using physical tech-
niques. In this, we are developing novel imaging
techniques for the study of the influence of mechan-
ical stresses on developmental processes. More-
over, the group works on the study of inherent non-
equilibrium systems that can be tracked physically,
such as driven granular gases. In the last year, we
have made considerable progress in these two ar-
eas, where we have determined the elastic proper-
ties of developing wing disc tissues of the fruit fly
Drosophila, as well as a description of the velocity
distributions of granular gases in terms of kinetic
theory, which is able to describe not only the driven
steady state, but also the cooling state. These two
projects will be described in detail below.

16.1 Photoelastic properties of
Drosophila wing imaginal
discs

In the study of developing tissues, we and others
have put forward the idea that mechanical feed-
back can work as a regulatory mechanism in tissue
growth [1–3]. In order to study this proposal ex-
perimentally, we have determined the photo-elastic
properties of the wing disc tissue after the applica-
tion of controlled forces while simultaneously deter-
mining its birefringence [4]. Unforced discs show a
compression in the centre of the disc, as shown in
Fig. 16.1, which increases with the age of the discs
as they develop [5].

A schematic of the setup used to exert controlled
forces onto the tissues is drawn in Fig. 16.2. The
wing imaginal discs were attached to two separate
cover slips using poly-lysine solution. This leads
to an electrostatic attraction of the tissue with the
cover slip and thus an efficient fixation. While one
of these cover slips is fixed, the other is attached to
a sheet of spring steel at a right angle. Due to the
geometric measures and the bending stiffness of the
spring sheet, a calibrated force can be exerted on
the cover slip and hence the wing disc by bending
the spring sheet. For this purpose we have used
a translation stage capable of resolving movements
down to a micron over a range of several mm.

100 µm
100 µm

Fig. 16.1 – The retardance map of a wild type
wing disc before (left) and after (right) uncontrolled
stretching. The results are similar to those found
previously on longer time scales and using a dif-
ferent setup. The colormap indicates retardance
varying between 0 nm (black) and 10 nm (red) [6].
For a determination of photo-elastic properties, the
stretching needs to be performed in a quantitative
manner.
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a)

b)

Fig. 16.2 – Top (a) and side (b) view of the mechan-
ical forcing setup. The wing disc (grey) is attached
to two glass cover slides, one of which is attached
to a surface. The other cover slide is fixed to a
spring sheet, which is forced by a translation stage
at a given distance. This gives a controllable force
ranging from 1µN to 1 mN, which is ideally suited
to study epithelial tissues.

Given the point of contact of the translation stage
with the spring sheet, we can easily calculate the
force exerted on the wing disc from classical elas-
ticity [8]:

F = 6EI
w2(L−w)d.

Here, E = 2×1011 Pa is the Young’s modulus of the
spring sheet, I = a3b/12 is the area moment of iner-
tia of the sheet with a thickness of a = 50µm and a
width of b = 1.1cm. Furthermore, L = 12cm is the
total length of the sheet and w = 4cm is the point
of contact with the translation stage. Finally, d

is the distance traveled by the translation stage.
Taking these data on the spring sheet together
yields a bending spring constant of 1.0 N/m, such
that the setup is capable of exerting forces between
1µN and 1 mN.

Using the pulling setup described above, we
have compressed and stretched wing discs with
a controlled force exerted by the spring sheet.
Typical results for different mechanical forcing are
shown in Fig. 16.3. Here, the retardance map
is somewhat different from the unattached discs,
which could be due to the fact that the attachment
with poly-lysine also exerts mechanical stresses
locally. In the figure, three different stages of
the experiment can be seen, corresponding to a
compression of the wing disc with a force of 30
µN (top), a slight stretching (10 µN - middle) and
strong stretching at 50 µN (bottom). We have
averaged the retardance over the central area of
the pulled disc tissue and find values of 2.9 nm
in the compressed case, 2.5 nm in the marginally
stretched case and 2.1 nm in the fully stretched
case. In some of our experiments, the force of
attachment on the cover slide was comparable to
the force exerted by the spring sheet. This led to
a detachment of the wing disc after having been
subject to a stretching force for several minutes to
half an hour. As can be seen from Fig. 16.4, such
detached wing discs revert to their original size,
which takes place over the course of 2-3 seconds.
The slight difference in appearance visible in Fig.
16.4 is due to the fact that the unattached side of
the disc can move in the z-direction bringing it

100 µm

100 µm

100 µm

Fig. 16.3 – The retardance map of a wing disc at different levels of stretching in the y-direction. The colormap
indicates retardance, changing from 0 nm (black) to 10 nm (red). In the left picture, the disc is compressed
with a force of 30 µN, while in the middle the disc is roughly in its initial state with a stretching force of
about 10 µN. The right picture shows a stretched wing disc at a force of 50 µN. Note that for an accurate
determination of the changes in retardance, proper averages over the stretched tissues need to be taken.
The resulting differences are of the order of 0.5 nm, with an increase in retardance for compressional stress
and a decrease for tensional stress.
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Fig. 16.4 – A stretched wing disc that has been detached from the cover slide (right). The disc reverted to
its original shape and size before stretching (left) in spite of having been stretched substantially, (middle).
The discrepancy in shape is explained by the fact that the unattached part of the disc is free to move in the
z-direction thus losing the focus. This indicates that on the corresponding time scale of half an hour and
for strains as big as 1, the disc behaves elastically.

out of focus and thus changing the form somewhat.
This implies that on the time-scale of half an hour,
the tissue does act elastically. In fact, a force
extension curve of a typical wing disc is rather
linear, as can be seen in Fig. 16.5, with an effective
spring constant of 0.5(1)N/m. This directly corre-
sponds to a Young’s modulus of the order of 104 Pa.

In other developing tissues, which have been
studied experimentally [7; 9; 10], spring constants
of the order of 10−3 N/m were found. Thus it
seems that the wing discs behave more stiff and
elastic than other tissues. It should be noted,

Fig. 16.5 – Force extension curves for four different
wing imaginal discs. The extension is taken start-
ing from the relaxed state. For a large range of
extensions, the force needed is linear and only in-
creases at strains in excess of 2. The initial slope of
the curve implies a high spring constant of wing disc
tissue as compared to embryonic samples [7; 9; 10].

however, that these investigations were done on

embryonic tissues, which is not the case for wing
imaginal discs.

For instance, the mechanical stresses in the larva
when feeding and moving are much higher than in
the embryo thus invoking stronger tissues. This is
corroborated by moduli of adult tissues, such as
blood vessels, skin or muscle, which range between
105 and 106 Pa [12; 13].
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16.2 Velocity distributions in levi-
tated granular media

In collaboration with the University of Konstanz,
we are studying the behaviour of granular gases
using diamagnetic levitation [1]. Due to the levi-
tation of the particles, it is possible to study the
behaviour of the grains as a function of time when
the excitation is switched off. Under normal cir-
cumstances, this behaviour is completely masked
by the gravitational effect of grains falling to the
bottom of the container. Due to the inelasticity of
collisions between grains, the particles continually
loose energy, which is a fundamental ingredient in
the theoretical description of granular gases us-
ing kinetic theory [2]. This has led to a description
of the freely cooling granular gas by Haff more than

25 years ago [3], which is used as a ground state in
the description of excited granular gases [4].

Using a collection of monodisperse Bismuth shots,
we have created a granular gas in the bore of a
strong superconducting solenoid [5]. At an applied
field of 13.5 T, the field gradient at the edge of the
solenoid is strong enough such that the diamagnetic
susceptibility of Bismuth leads to a repulsive force
that equals gravity. Exciting the granular gas using
an alternating component of the levitating field, a
homogeneously driven granular gas can be created.
This is different from usual granular gases, which
are typically driven by mechanical shaking from the
outside, which implies an inhomogeneous input of
energy, which is difficult to calculate theoretically.
For these differently excited granular gases, we can
then determine the velocity distributions using par-
ticle identification and tracking given snapshots as
those shown in Fig. 16.6. Here, deviations from
the Maxwellian distribution are expected due to
the non-equilibrium nature of the gas. This de-
scription will typically take place in the framework
of kinetic theory, which in its simplest form will
take the homogeneously cooling state as its start-
ing point, which will be a scaling solution also for
the steady state [6].

For a simple model, we will resort to the descrip-
tion of the homogeneous cooling state given in [5].
This implies that we will normalise the speeds by
their mean, c = v/〈|v|〉. For small speeds, it is
then possible to calculate the velocity distribution

Fig. 16.6 – Snapshots of the distri-
bution of particles during excitation
using a magnet coil (left) and me-
chanically via a loudspeaker (right).
In the first case the driving force is
homogeneously distributed over the
whole sample, whereas in the second
case energy transfer takes place only
at the boundary which results in a
different distribution.
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Fig. 16.7 – Velocity distributions for the different cases of driving (left: coil; right: speaker). The distributions
are given for different time periods after which the driving has been switched off. This means that the cooling
process is studied. In case kinetic theory can be used to describe the process, the distributions should only
scale via their width, which decreases according to Haff’s law. As can be seen, this is not the case for the
driving with a speaker. Here the distribution at late times approaches that of the homogeneously driven
case, which does scale with cooling time.

starting from the equilibrium case of a Gaussian
distribution given by:

G(c) =
1
π
exp(−c2/π).

The distribution p(c) can then be treated by
∆(c) = p(c)/G(c) − 1, corresponding to the first
Sonine polynomial, assuming a normalised distri-
bution with a mean speed of unity. For a full char-
acterisation, we will finally have to determine 〈c2〉,
which in the simplest description of the homoge-
neously cooling granular gas, can be achieved us-
ing the collisional dynamics of an average particle.
With the loss of kinetic energy due to collisions one
obtains:

2`
d〈|v|〉
dt

= (1− ρ2)〈|v|〉2

= 〈v2 − 〈|v|〉2 − ρ2(〈|v|〉 − v)2〉

for the rate of change in the speed of an average
particle, where the first term corresponds to the dy-
namics implied by Haff’s law. Here, ` is the mean
free path of a particle between collisions and (1−ρ2)
is the average coefficient of restitution. Solving this
equation by taking into account that 〈v〉 = 0, one
obtains 〈v2〉 = 2〈|v|〉2 or alternatively 〈c2〉 = 2,
independent of the coefficient of restitution. This
implies for the velocity distribution:

p(c) = G(c)(
2
π

)3(π2/2− 5π/2c2 + c4).

We have now determined the velocity distribu-
tions during the cooling process in order to assess
whether this state can be used as a ground state
onto which the steady state properties scale. The
different distributions for different excitations are
shown in Fig. 16.7.

The velocity distribution at different times in the
cooling process do scale with the temperature of
the gas in the homogeneously excited case, as is
predicted by kinetic theory. This however is not
the case for a mechanically shaken gas, where the
energy input is from a boundary. Interestingly, the
coefficient of restitution does not seem to play a
role in the description of the velocity distributions
at small speeds, as the Sonine expansion we find is
independent of the coefficient of restitution. This is
corroborated from our data of particles at different
ρ = 0.35 and ρ = 0.7, as well as the data of Reis
et al. [7] with still higher ρ = 0.95. In addition,
the data show conclusively that the deviations from
near equilibrium distributions in most experiments
[2] are mainly due to boundary effects implied by
the excitation of the particles in these studies.
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