

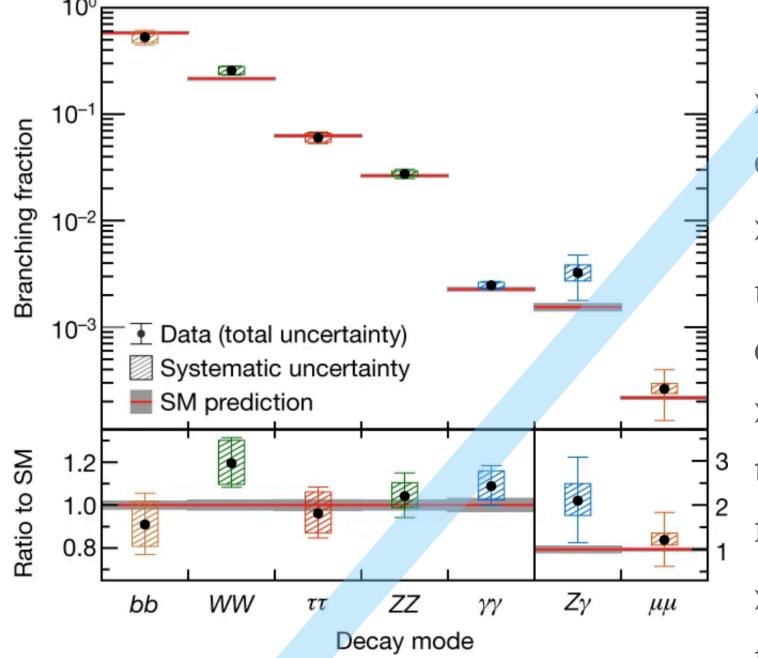
THE TOP-HIGGS CONNECTION

M. Grazzini and C. Savoini

- The **Standard Model** of Particle Physics is the theoretical framework describing the elementary particles and their interactions through the strong, weak and electromagnetic forces.
- In order to give mass to the Standard Model particles, it is necessary to assume the existence of a scalar field, permeating the whole space-time, called **Higgs field**.
- The vacuum excitation of the Higgs field is called **Higgs boson** and it was discovered in **2012** at the Large Hadron Collider (LHC).
- This incredible discovery opened the doors to ten years of searches and measurements which allowed to further test the validity of the Standard Model.
- The Large Hadron Collider has collected a large wealth of data, but **no direct signal of New Physics** beyond the Standard Model has been unveiled so far.
- Searches for New Physics signals must proceed by looking for **tiny deviations** in Standard Model processes: **precision is the keystone** of new physics searches.

B. TOP-QUARK

- It is the **heaviest fermion** known up to date, with a mass close to the Higgs vacuum expectation value ($m_t = 173 \text{ GeV}$).
- ➤ It is the SU(2) partner of the bottom quark, with an electric charge equal to +2/3.
- The top quark has a short life and weakly decays into a W-boson and a bottom quark, before hadronising.
- Being the heaviest Standard Model particle, it couples strongly with the Higgs boson.


A. HIGGS BOSON

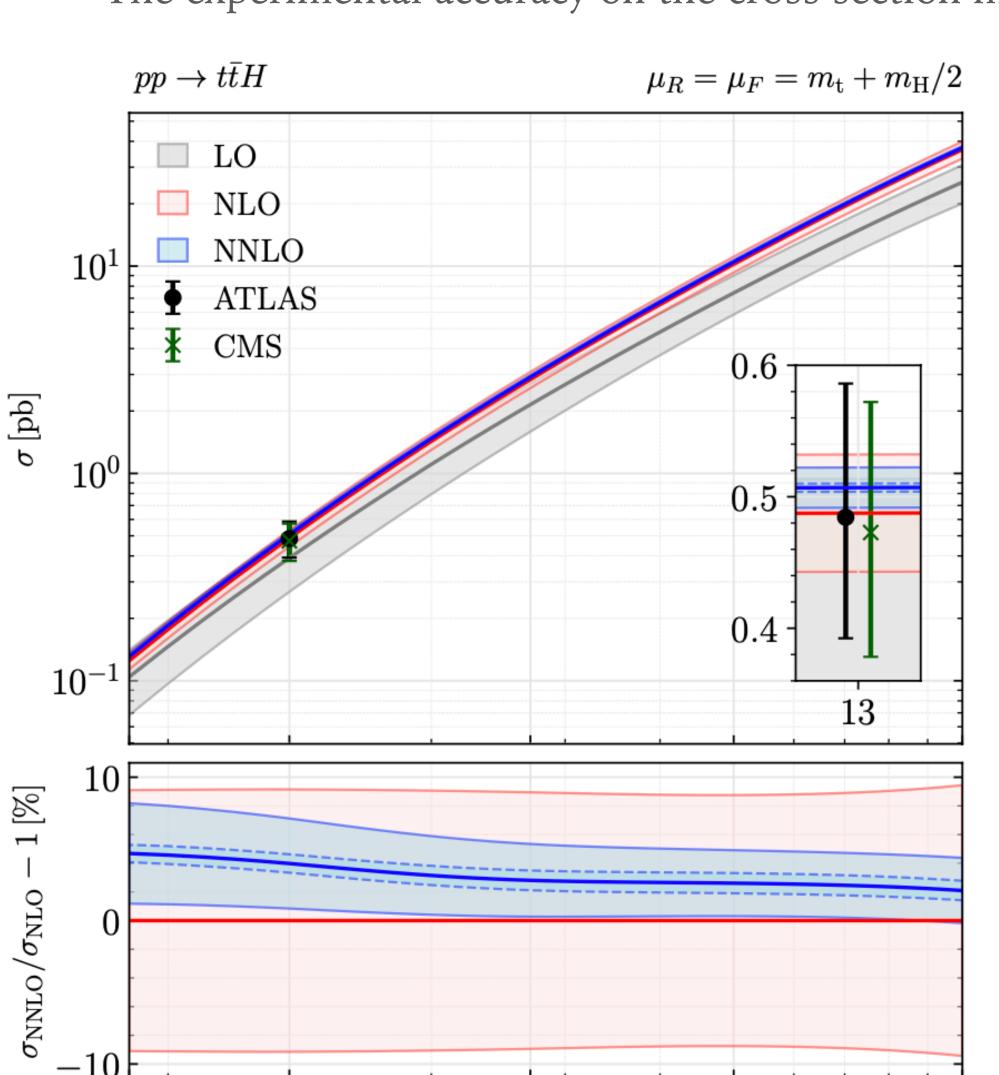
- ➤ It is a scalar (spin 0) field with mass $m_H = 125$ GeV.
- ➤ It is electrically neutral and colourless: it cannot couple directly to gluons and photons.
- ➤ It generates the mass term for the electroweak bosons via the so called **Brout-Englert-Higgs (BEH) mechanism**, proposed in 1964.
- ➤ It gives mass to fermions through **Yukawa-type** interactions.
- The Higgs couplings to fermions and bosons are proportional to the mass of the respective particle: the larger is the mass, the stronger is the coupling to the Higgs boson!

PRODUCTION AND DECAY MECHANISMS:

- There are **4 possible production modes** in proton-proton collisions: gluon fusion (87%), vector boson fusion (7%), Higgs strahlung (4%) and Higgs production in association with one or two top quarks (~1%).
- The dominant mechanism is gluon fusion
 where two gluons, one from each incident
 proton, fuse via a top quark quantum
 loop.

 t

- Concerning the **decay modes**, the Higgs boson can decay into a pair of vector bosons or fermions.
- The discovery channels in 2012 were $H \to ZZ \to 4l$, usually called "4-lepton channel", and $H \to \gamma\gamma$ (via a top-quark or a W-boson loop).
- The huge amount of data collected by the LHC during these ten years allowed to measure the branching fractions of $H \to \tau^+ \tau^-$ and $H \to b\bar{b}$.
- The Higgs decays into a pair of 1^{st} or 2^{nd} generation fermions are very rare and have not been established yet.


C. ASSOCIATE HIGGS-TOP PRODUCTION

The top quarks are not evanescent quantum fluctuations as in gluon fusion but they are instead produced as short-lived real particles and detected together with the Higgs.

For this reason, this production mode is particularly relevant allowing for a direct measurement of the **top-Yukawa coupling!**

50

The experimental accuracy on the cross section measurement is currently $\mathcal{O}(20\%)$ but it

 $\sqrt{s} \, [\text{TeV}]$

is expected to go down to $\mathcal{O}(2\%)$ in the next years, with more data collected.

➤ In order to match the expected experimental accuracy, more precise theoretical predictions are mandatory.

The inclusion of next-to-next-to-leading order (NNLO) corrections in QCD perturbation theory is needed:

$$\sigma = \sigma_{\text{LO}} + \Delta \sigma_{\text{NLO}} + \Delta \sigma_{\text{NNLO}} + \dots$$

- The main bottleneck in the theoretical computation is represented by the **two-loop virtual amplitudes**, which are at the frontier of current technologies.
- To overcome this problem, in a recent work, we developed a **soft-Higgs boson approximation** ($p_H \rightarrow 0$) and we properly extended it to account for a physical Higgs.
- ➤ This approximation allowed us to compute the NNLO cross section with a residual uncertainty of less than 1%, obtaining the most advanced perturbative prediction up to date!

σ [pb]	$\sqrt{s} = 13 \mathrm{TeV}$	$\sqrt{s} = 100 \mathrm{TeV}$
$\sigma_{ m LO}$	$0.3910{}^{+31.3\%}_{-22.2\%}$	$25.38 {}^{+21.1\%}_{-16.0\%}$
$\sigma_{ m NLO}$	$0.4875{}^{+5.6\%}_{-9.1\%}$	$36.43^{+9.4\%}_{-8.7\%}$
$\sigma_{ m NNLO}$	$0.5070(31)^{+0.9\%}_{-3.0\%}$	$37.20(25)^{+0.1\%}_{-2.2\%}$

Join us for bachelor and master thesis projects!

