ELECTRON WAVES AND NANO-MAGNETISM CONTROLLING MATTER AT THE LEVEL OF INDIVIDUAL ATOMS

Ales Cahlik¹, B. Zengin¹ and F. D. Natterer¹

1 - Department of Physics, University of Zurich, Zurich, Switzerland

Metallic alloys can offer an interesting alternative to conventionally utilized pure metal substrates due to a larger flexibility in the effective lattice parameter. One of the candidates is the binary alloy Cu₃ Au, that has been recently employed to grow large insulating nitride islands¹.

Cu₂Au(111) ORDERED/DISORDERED PHASE

Cu₃Au(111) surface

- First order order—disorder phase transition at 390 °C
- Disordered = randomly distributed atoms
- Ordered = Arranged Au atoms
- Band back folding due to new BZ

Preparation:

- 1. Ar⁺ sputtering + annealing to 600 °C
- 2. 1h annealing above 390°C + fast cooling (DISORDERED)
- 3.15h+ annealing below 390°C (ORDERED)

Overview scans showing domain growth depending on cooling dynamics, lattice ~ 40 nm

image STM

Ordered Phase

Atomic resolution
CO functionalization
Visible both Au and Culattices

Maze-like contrast in nc-AFM

Surface State
Dispersion

QPI mapping

Scattering enhanced with CO molecules

Band backfolding not visible (too high in energy)

AFM

COBALT ISLAND GROWTH Cu₃Au(111)

100x100 nm², -1V, 100pA

- ▶5% lattice mismatch
- ► Growth on both ordered and disordered phase
- Cobalt deposition at surface @ 160 °C
- ► Post annealing
- ► No strong alloying/intermixing at RT
- ► Preferential stacking orientation

Take-home for Cu₃Au(111):

- Playground for electronic structure modification (scattering on new BZ boundaries and domain walls)
- Substrate for growth of magnetic Co islands with less stacking faults and lower intermixing (higher stability at RT)

Spin polarized dldV

Tips: controlled dipping into Co islands
Similar spectroscopic behavior as Co/Cu(111)[2]

-650 mV -420 mV -2 [2] Pietzsch et al., Phys. Rev. Lett., 2004