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Abstract

String backgrounds are usually described by superconformal field
theories on the worldsheet. For a subset of these backgrounds an alter-
native description exists in terms of N = 2 supersymmetric Landau-
Ginzburg theories. D-branes are realized as matrix factorizations of
the Landau-Ginzburg superpotential and fit into the structure of a
triangulated category. Parities can be defined as functors in these
categories. In this work we use all these established results to give de-
tailed instructions on how to explicitly construct string backgrounds
with Orientifolds and D-branes, which solve the tadpole constraint
and which are spacetime-supersymmetric. By including the most gen-
eral permutation branes, many backgrounds can be constructed which
currently do not have a CFT description.
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1 Introduction

String theory in ten dimensions has developed itself into a candidate for a
consistent theory of quantum gravity coupled to matter. The additional six
dimensions are not observed in our macroscopic world, thus the idea of com-
pactified dimensions was introduced, an idea originally going back to Kaluza
and Klein. Much research has been devoted to study string compactifica-
tion, first in the context of heterotic string theory. A good review on string
compactification can be found in [1].

The second superstring revolution lead to the discovery of powerful du-
alities between different string theories, each of them being a different limit
of a conjectured unified theory, commonly referred to as M-theory. D-branes
have been recognized as being fundamental dynamical entities, whose soli-
tonic nature makes them ideal candidates to study nonperturbative aspects
of string theory. Moreover, since the D-branes carry non-abelian gauge fields,
they can be used to build realistic type II string backgrounds.

The so-called geometrical compactifications use Calabi-Yau (CY) mani-
folds as internal target spaces. The inclusion of D-branes in compact CY
spaces potentially spoils the consistency of the theory. This is due to the
fact that D-branes carry Ramond-Ramond-charge [2]; a nonzero total charge
leads to a tadpole anomaly [3]. To render the theory consistent, one needs
to add further objects which compensate the RR-charge of the ones already
present. The only candidates known are D-branes and Orientifolds.

String theories are perturbatively defined by specifying a superconformal
field theory (SCFT) living on the worldsheet. The amount of worldsheet
supersymmetry has a strong impact on the behaviour of the theory. Many
supercharges help doing explicit calculations, but lead to a rigid structure of
the theory, rendering it uninteresting. Models with little supersymmetry on
the other hand are less calculable. The N = 2 case has become popular as a
good compromise between both extremes [4].

Only a subset of all N = 2 SCFT’s describe geometric compactifications.
Well-known examples are nonlinear sigma models, where the target space
coordinates are scalar fields living on the worldsheet. The non-geometric
compactifications on the other hand describe models where the classical no-
tions of geometry break down. The most simple N = 2 SCFT’s belong
to this class, namely the Minimal models [2]. These are rational conformal
field theories (RCFT), which are exactly solvable. However, they can not
be used as consistent string backgrounds, because the central charge does
not have the right value (c = 9). This problem can be overcome by ten-
soring together several Minimal models. The resulting c = 9 theories are in
general not spacetime-supersymmetric. Applying a certain orbifolding proce-
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dure yields the Gepner models, which describe exactly solvable non-geometric
string backgrounds with spacetime-supersymmetry [5].

Some N = 2 SCFT’s can be described using N = 2 Landau-Ginzburg
(LG) theories. These are N = 2 supersymmetric field theories which are
not conformally invariant, but which flow into the SCFT under the renor-
malization group [4]. These LG theories are characterized by a quasihomo-
geneous superpotential W (xi), which determines the chiral ring structure of
the SCFT. Gepner models are examples of SCFT’s which admit a description
in terms of LG orbifolds.

In a remarkable development, it has been shown that there exists a
connection between Gepner models, characterized by the LG-superpotential
W (xi), and nonlinear sigma models on CY target manifolds defined by the
equation W = 0 in weighted projective space [6]. A more detailed analysis
revealed that the nonlinear sigma model and the Landau-Ginzburg theory
describe two different points in the same moduli space [7]. This connection
is known as the LG/CY-correspondence.
N = 2 supersymmetric theories can be twisted into topological field theo-

ries. This can be done in two different ways, leading to the A-model and the
B-model, which can be interpreted as topological sectors of the untwisted
theories. These two models are related to eachother by Mirror symmetry.
D-branes and Orientifolds are accordingly called A-type resp. B-type, de-
pending on whether the theory is A-twisted or B-twisted [8]. B-twisted
Landau-Ginzburg theories are especially suitable to study topological string
backgrounds, because correlation functions are easily computed using the
formulas developed in [9, 10, 11].

Topological D-branes fit into the structure of a triangulated category [12].
In the case of B-twisted Landau-Ginzburg models, it is the category of matrix
factorisations [13]. Orientifolds can be implemented in terms of functors in
these categories [11]. The RR-charges of D-branes and Orientifolds can be
computed using the formulas given in [11, 14].

In this work we use all these established results to give detailed instruc-
tions on how to construct tadpolefree and spacetime-supersymmetric string
backgrounds with Orientifolds and D-branes in the Landau-Ginzburg lan-
guage. We will be mostly interested in LG models of Fermat-type in five
variables. In those cases where the LG theories flow into Gepner models, we
compare our results with those of CFT calculations performed in [15].
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2 N = 2 Superconformal Field Theories

2.1 The N = 2 superconformal algebra

We start by reviewing some elementary facts about N = 2 SCFT’s, following
[4]. The holomorphic (left-moving) part of theN = 2 superconformal algebra
is generated by the energy momentum tensor T (z), two supercharges G±(z)
and a U(1) current J(z). They have the following mode expansions:

T (z) =

∞∑

n=−∞

Lnz
−n−2

G±(z) =
∞∑

n=−∞

G±
n±az

−(n±a)−3/2

J(z) =
∞∑

n=−∞

Jnz
−n−1

(1)

The real parameter a labels different N = 2 SCFT’s. There are two special
cases: theories with a = 0 are said to be in the Ramond sector, while those
with a = 1/2 are said to be in the Neveu-Schwarz sector. The holomorphic
part of the N = 2 superconformal algebra is now given by:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0

[Jm, Jn] =
c

3
mδm+n,0

[Ln, Jm] = −mJm+n

[Ln, G
±
m±a] =

(n
2
− (m± a)

)
G±
m+n±a

[Jn, G
±
m±a] = ±G±

m+n±a

{G+
n+a, G

−
m−a} = 2Lm+n + (n−m+ 2a)Jn+m +

c

3

[
(n+ a)2 −

1

4

]
δm+n,0

Note that the complete theory also contains the antiholomorphic (right-

moving) sector with generators T̃ (z̄), G̃±(z̄) and J̃(z̄), satisfying the same
relations like their holomorphic counterparts.

Let φ(z) be a primary field. By the state-operator correspondence we can
associate a heighest weight state |φ〉 to the primary field: |φ〉 = φ(0)|0〉. It
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satisfies the following relations:

G±
r |φ〉 = 0, r ≥

1

2
, G±

− 1
2

|φ〉 = |Λ±〉 (2)

Ln|φ〉 = 0, n ≥ 1, L0|φ〉 = hφ|φ〉 (3)

Jn|φ〉 = 0, n ≥ 1, J0|φ〉 = qφ|φ〉 (4)

Here |Λ〉 denotes the superpartner of |φ〉. Similar relations hold in the an-
tiholomorphic sector. The theories with central charge c = 3k/(k + 2),
k = 1, 2, . . . are called N = 2 Minimal models. They have only finitely
many highest weight irreducible representations, which are labeled by the
weight hφ and by the U(1)-charge qφ.

2.2 The chiral ring

A primary field is called a chiral primary field, if the associated state is anni-
hilated by the operator G+

−1/2. Similarly the state associated to a antichiral

primary field is annihilated by the operator G−
−1/2. In the antiholomorphic

sector we define chiral and antichiral primary fields by replacing G± by G̃±.
Thus we get four special types of NSNS primary fields, which we label with
(c, c), (a, c), (a, a) and (c, a). Here the first letter refers to the holomorphic
(left-moving) sector. These fields have interesting properties as we will see
in the following.

From the SCFT algebra we extract the following anticommutators

{G−
1/2, G

+
−1/2} = 2L0 − J0

{G−
−1/2, G

+
1/2} = 2L0 + J0

which we sandwich between heighest weight states:

〈φ|{G−
1/2, G

+
−1/2}|φ〉 = 〈φ|2L0 − J0|φ〉 (5)

〈φ|{G−
−1/2, G

+
1/2}|φ〉 = 〈φ|2L0 + J0|φ〉 (6)

Unitarity implies G−
1/2 = G+†

−1/2 and G−
−1/2 = G+†

1/2, thus the left hand side of

(5) and (6) is positive. Therefore all states in unitary N = 2 SCFT’s satisfy
the following inequality:

hφ ≥
1

2
|qφ|

Furthermore (5) and (6) imply (using (2)) that the chiral resp. antichiral
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primaries saturate this bound:

hφ = +
1

2
qφ (chiral primaries) (7)

hφ = −
1

2
qφ (antichiral primaries) (8)

The same relations hold in the antiholomorphic sector. Furthermore it can
be shown that all fields saturating the inequality are chiral resp. antichiral
primaries.

Another important property of chiral primaries comes from the analysis
of their operator products. It turns out that these are nonsingular and that
the product of two chiral primaries is again a chiral primary. Thus the chiral
primaries form a ring called the chiral ring. Similarly there is the antichiral
ring consisting of antichiral primaries. By combining the holomorphic and
the antiholomorphic sector we get a total of four rings, again denoted by
(c, c), (a, c), (a, a) and (c, a). The latter two are complex conjugates of the
first two. In the case of Minimal models and their tensor products these
rings are finite, which is very helpful for doing explicit calculations. The
importance of these four rings comes from the fact that they encode essential
data of the SCFT.

2.3 Spectral flow

In every N = 2 superconformal theory there exist spectral flow opera-
tors UθL,θR

which shift the U(1)-charges of the states by (−cθL/3,−cθR/3)
[4, 16, 17]. Note that the sign convention used in these references differ, we
choose the convention used in [16]. These spectral flow operators connect dif-
ferent sectors of the theory, providing explicit isomorphisms between SCFT
algebras with different values for the parameter a introduced in (1). In the
holomorphic sector the isomorphism is given by

UθL
LnU

−1
θL

= Ln + θLJn + (c/6)θ2
Lδn,0

UθL
G±
r U

−1
θL

= G±
r±θL

UθL
JnU

−1
θL

= Jn + (c/3)θLδn,0

We want to point to a potential source of confusion. Let |φ〉(NS,NS) be a
state in the NSNS sector and let |φ〉(R,R) be its image under spectral flow.

The U(1)-charges of both states are defined as eigenvalues of the J0 resp. J̃0

operator which live in the NSNS sector, see [18] for more details. We use the
following notation:

J0|φ〉(NS,NS) = q(NS,NS)

φ,L |φ〉(NS,NS), J0|φ〉(R,R) = q(R,R)

φ,L |φ〉(R,R)

J̃0|φ〉(NS,NS) = q(NS,NS)

φ,R |φ〉(NS,NS), J̃0|φ〉(R,R) = q(R,R)

φ,R |φ〉(R,R)
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U(1)-charge condition Isomorphism

q(NS,NS)

L − q(NS,NS)

R ∈ Z {|φ〉(c,c)}
U(1/2,1/2)
−−−−−→ {|φ0〉(R,R)}

q(NS,NS)

L + q(NS,NS)

R ∈ Z {|φ〉(a,c)}
U(−1/2,1/2)
−−−−−−→ {|φ0〉(R,R)}

q(NS,NS)

L ∈ Z/2 {|φ〉(c,c)}
U(1,0)
−−−→ {|φ〉(a,c)}

q(NS,NS)

L ∈ Z {|φ〉(R,R)}
U(1/2,0)
−−−−→ {|φ〉(NS,R)}

Table 1: Isomorphisms provided by spectral flow

The spectral flow operator is well-defined, if it is a local operator with
respect to all fields in the SCFT. This condition of locality translates into
conditions for the U(1)-charges of the NSNS states [17]. Table 1 shows some
of the important isomorphisms and the associated charge conditions. We use
the notation |φ0〉 to denote the ground states of the RR sector.

The spectral flow between the RR and NSR sectors is especially impor-
tant because it implements spacetime-supersymmetry. The last condition in
table 1 states that the integrality of the U(1)-charges in the NSNS sector
is a necessary condition for spacetime-supersymmetry to be present in the
theory:

q(NS,NS)

L ∈ Z (spacetime-supersymmetry condition) (9)

3 N = 2 Landau-Ginzburg Theories

3.1 Chiral superfields

Before we describe Landau-Ginzburg theories, we give a short review on
superspace and superfields based on chapter 12 in [19]. Consider a twodi-
mensional field theory on flat R2 with time coordinate x0 = t and space
coordinate x1 = s. In addition to these bosonic coordinates we introduce
four pairwise anticommuting coordinates

θ+, θ−, θ
+
, θ

−

where the bar denotes complex conjugation. These six coordinates span
the (2, 2) superspace. Next we define the vector R-rotation and the axial
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R-rotation:

V : θ± 7→ e−iαθ±, θ
±
7→ eiαθ

±
(10)

A : θ± 7→ e∓iβθ±, θ
±
7→ e±iβθ

±
(11)

Here α and β are real parameters.
Functions defined on the superspace are called superfields. They can be

Taylor expanded in monomials in θ± and θ
±
:

F(x0, x1, θ+, θ−, θ
+
, θ

−
) = f0(x

0, x1) + θ+f+(x0, x1)

+ θ−f−(x0, x1) + θ
+
f ′

+(x0, x1)

+ θ
−
f ′
−(x0, x1) + θ+θ−f+−(x0, x1) + · · ·

Due to the anticommuting property of the fermionic coordinates, there are
at most 16 nonzero terms in the expansion. The action of the R-rotations on
superfields is defined as follows:

V : F(x0, x1, θ±, θ
±
) 7→ eiαqVF(x0, x1, e−iαθ±, eiαθ

±
)

A : F(x0, x1, θ±, θ
±
) 7→ eiβqAF(x0, x1, e∓iβθ±, e±iβθ

±
)

The real numbers qV and qA are called vector R-charge resp. axial R-charge
of F .

Now we switch to the lightcone coordinates x± = x0 ± x1 and define

∂± =
1

2

(
∂

∂x0
±

∂

∂x1

)

Using these partial derivatives we define a set of four differential operators
called covariant derivatives:

D± =
∂

∂θ±
− iθ

±
∂±

D± = −
∂

∂θ
± + iθ±∂±

(12)

Finally we define chiral superfields Φ and antichiral superfields Φ satisfying
the following equations:

D±Φ = 0 (chiral superfield)

D±Φ = 0 (antichiral superfield)
(13)
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3.2 Landau-Ginzburg orbifolds

The action of a N = 2 supersymmetric Landau-Ginzburg theory is defined
as [19]

S =

∫
d2zd4θK(Φi,Φi) +

(∫
d2zd2θW (Φi) + c.c.

)
(14)

with d4θ = dθ+dθ−dθ
−
dθ

+
and d2θ = dθ−dθ+. The Φi, i = 1 . . . r are chiral

superfields, W (Φi) is called the superpotential. It has the special property of
quasihomogeneity, which means that W (Φi) satisfies the equation

W (λwiΦi) = λHW (Φi) ∀λ ∈ C, wi, H ∈ Z (15)

where the wi are the weights of the chiral superfields. H is called the degree
of the superpotential. W (Φi) being quasihomogeneous implies that the LG-
action has a vector R-symmetry by assigning every chiral superfield R-charges
as follows:

qi = q(Φi) =
2wi
H

(16)

To see the symmetry note that q(d2θ) = −2 because of (10). Furthermore
q(W ) = 2 follows from (15) and (16) with λ = exp(2πi/H).

The N = 2 LG theories are not conformally invariant, but flow into
SCFT’s by the renormalization group [16]. We will use the term ’LG theory’
interchangeably for the high energy and the low energy theory. Thanks to
N = 2 supersymmetry, the superpotential is protected from renormalization
[19] and thus captures important data of the SCFT at the infrared fixed
point. The (c, c)-ring of the SCFT is isomorphic to the local ring of W (Φi),
which is the space of all monomials of Φi modulo setting to zero ∂jW (Φi):

R(c,c) ≃
C[Φi]

〈∂jW (Φi)〉
(17)

For the (a, a)-ring, the same relation holds with Φi replaced by Φi. On the
other hand, the (a, c)-ring and the (c, a)-ring of the SCFT are trivial; this will
change as soon as we introduce LG orbifolds. Due to the quasihomogeneity
property, the R-charges of the LG theory flow into the left and right U(1)-
charges of the SCFT. Since d2θ has U(1)-charges (-1,-1), it follows from the
neutrality of the action that W (Φi) has U(1)-charges (1,1). Then the chiral
superfields must have equal left and right U(1)-charges at the infrared fixed
point:

qi,L = qi,R =
wi
H

(18)
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Note that we always use subscripts L [R] to indicate that the charges are
to be interpreted as left [right] charges of the low energy theory. Charges
without subscript are meant to be R-charges of the high-energy theory.

The simplest example of a LG theory is characterized by the superpoten-
tial W = Φk+2. The chiral ring is R(c,c) = {1,Φ,Φ2, . . . ,Φk} and we have
qL(Φ) = qR(Φ) = 1/(k+2). The SCFT has a central charge of c = 3(1−q(Φ))
and can be identified with the level k Minimal model [20].

To make a LG theory spacetime-supersymmetric we need to project onto
integral U(1)-charges. This can be achieved by orbifolding the theory by
exp(2πiJ0) [21]. More precisely, let Γ ∼= ZH be the global symmetry group
whose generator g acts on the superchiral fields as

g : Φi 7→ ωwiΦi (19)

with ω = e2πi/H . Orbifolding is now done with respect to the generator g.
The orbifolding procedure introduces sectors containing twisted states, these
sectors are enumerated by a label l. In contrast to the unorbifolded LG
theory there is now a nontrivial (a, c)-ring, which will play a crucial role later
in this document.

To construct LG orbifolds which flow into Gepner models, we need to
combine multiple Minimal models and apply the orbifolding procedure de-
scribed above. This leads to LG orbifolds, where the superpotential has the
form

W =
r∑

i=1

Φhi
i

with hi = H/wi. These models are denoted by P(w1,...,wr)[H ]. Finally we
need to make sure that the central charge satisfies c = 9. This condition is
equivalent to requiring

H =

r∑

i=1

wi (20)

to hold with r = 5 [6]. LG orbifolds satisfying (20) are said to be of Fermat-
type and indeed flow into Gepner models for r = 5. In the following we will
mostly be interested in the five-variable case.

3.3 Topological twist

For N = 2 supersymmetric theories there exists an operation called the topo-
logical twist, which changes the original theory into a topological field theory.
We shall be brief here and refer the reader to more detailed discussions in
[4, 8, 19, 22, 23]
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twist signs scalar supercharges model name

(−,−) (G+
−1/2, G̃

+
−1/2) A model

(+,+) (G−
−1/2, G̃

−
−1/2) Ã model

(+,−) (G−
−1/2, G̃

+
−1/2) B model

(−,+) (G+
−1/2, G̃

−
−1/2) B̃ model

Table 2: The four twisted models and their scalar supercharges

Conformal invariance is not necessary to perform the topological twist.
Nevertheless we choose to define the twisting procedure from a SCFT point
of view. For our work this is no restriction, because our theories of interest
always have a conformal infrared fixed point. Twisting then means to modify
the bosonic generators of the superconformal algebra as follows:

T (z) 7→ T (z)±
1

2
∂J(z), T̃ (z) 7→ T̃ (z)±

1

2
∂J̃(z)

J(z) 7→ ±J(z), J̃(z) 7→ ±J̃(z)

Here it is understood that the same sign is chosen in the first and in the
second line. This leaves four sign choices, which we denote with (±,±).
The twisting procedure modifies the conformal weights of the supercurrents.
Consider the following supercharges:

G±
−1/2 =

∮
G±(z)dz, G̃±

−1/2 =

∮
G̃±(z)dz

One holomorphic and one antiholomorphic supercharge becomes a scalar
fermionic supercharge after twisting, depending on the sign choice desribed
above [23]. Table 2 shows the four different models, which we have given the

names conventionally used in the literature. The Ã [B̃] model is related to the
A [B] model in a simple way, namely all correlators are related by an overall
complex conjugation. Thus there are essentially two different topologically
twisted theories: the A model and the B model. Note that the twisted super-
charges are the zero modes of the twisted supercurrents due to the change
in conformal weight; we have deliberately chosen to keep the mode labels
unchanged in order to not cause too much confusion.

The essential step is now to interpret the scalar supercharges as BRST
charges, whose cohomology gives the physical spectrum of the twisted theory
[4]. It then turns out that the energy momentum tensor is BRST exact, from
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which it follows that all correlation functions are independent of the metric
[22]. Theories with this property are called topological field theories. Their
physical spectrum corresponds exactly to one of the four chiral rings:

A model ←→ Hphys = R(c,c)

Ã model ←→ Hphys = R(a,a)

B model ←→ Hphys = R(a,c)

B̃ model ←→ Hphys = R(c,a)

(21)

We can interpret each of these topological theories as describing a topolog-
ical sector of the full theory. Note that we have used the state-operator
correspondence when interpreting the chiral rings as hilbert spaces of states.

The relation between the correlation functions in the twisted and un-
twisted theories has been worked out in [4]. First, there is a U(1)-current
anomaly in the topological theory, which can be interpreted as a background
charge of (±c/3,±c/3). The signs again reflect the choice of the topological
sector. Thus for a topological correlator to be nonzero, the total U(1)-charge
of all insertions must compensate the background charge. From this, one can
derive the following relation, which is valid if we restrict ourselves to local
operator insertions:

〈
n∏

i=1

φ(NS,NS)

i

〉

twisted

=

〈
φ(R,R)

1

∣∣∣∣∣

n−1∏

i=2

φ(NS,NS)

i

∣∣∣∣∣φ
(R,R)

n

〉

untwisted

(22)

|φ(R,R)

i 〉 are the Ramond-Ramond ground states related to the heighest weight
states |φ(NS,NS)

i 〉 by a spectral flow of (±c/6,±c/6). We are mainly interested
in the case n = 2, where the relation (22) can be used to relate RR-charges of
D-branes and Orientifolds in the untwisted model to topological correlators
in the twisted model. This also works in the high-energy regime, where
we can use Landau-Ginzburg theories to study the SCFT at the infrared
fixed point. Formulas for computing these RR-charges in B-type topological
Landau-Ginzburg models have been developed in [11, 14]. These will be of
primary importance later in this document.

3.4 Topological correlators

The charge formulas, which we will introduce later, are based on Landau-
Ginzburg B-type topological correlators. For worldsheets without boundaries
and crosscaps, general expressions for these correlators have been derived in
[9]. These have the structure of a multidimensional residue:

〈F (Φi)〉g =

∫
dx1dx2 . . . dxr

∂1W∂2W . . . ∂rW
F (Φi)H

g−1(Φi) (23)
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F (Φi) is a polynomial of the superfields, g denotes the genus of the worldsheet
and H(Φi) is the Hessian of the superpotential W (Φi):

H(Φi) = det(∂j∂kW (Φi)) (24)

The Hessian is the unique element of maximal R-charge in the chiral ring [4].
In the following we need the dimension of the chiral ring:

µ = dim R(c,c) =

r∏

i=1

(
H

wi
− 1

)
=

r∏

i=1

(
2− qi
qi

)

Let us now define the following residue:

ResW (F (Φi)) = 〈F (Φi)〉g=0

It can be evaluated using the following rule: first decompose F (Φi) as a sum
over contributions with different R-charges:

F (Φi) = αHH(Φi) +
∑

q<q(H)

αqFq(Φi)

Then the residue is given by

ResW (F (Φi)) = αHµ (25)

3.5 Ramond-Ramond ground states

3.5.1 Generic Landau-Ginzburg orbifolds

The formulas to calculate RR-charges of D-branes and Orientifolds, which we
will introduce later, are essentially one-point functions. The single operator
is an element of the (a, c)-ring related to a RR ground state in the untwisted
theory. In a first step we determine all RR ground states in generic Landau-
Ginzburg orbifold theories, not restricting to a particular topological sector.
Following [17], we note that the states before orbifold projection have the
form

|φ0〉
l
(R,R)

=
∏

lqi,L∈Z

Φni
i |0〉

l
(R,R)

where |0〉l(R,R) is the unique state with lowest U(1)-charges in the l-th twisted
sector. Like in equation (17), the exponents ni are constrained by the condi-
tion ∂jW (Φi) = 0. We see that only those chiral superfields untwisted in the
l-th sector contribute to the ground states. To calculate the U(1)-charges of
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these states, we need the charges of the chiral superfields given in equation
(18) and the charges of the states |0〉l

(R,R)
, which are calculated as follows:

(
J0

J̃0

)
|0〉l

(R,R)
=


±

∑

lqi,L /∈Z

(
lqi,L − [lqi,L]−

1

2

)
+
∑

lqi,L∈Z

(
qi,L −

1

2

)
 |0〉l

(R,R)

(26)
Here [x] denotes the greatest integer smaller than x. To find those RR ground
states surviving the orbifold projection, we first perform a spectral flow into
the NSNS sector, then project onto integral U(1) charges and finally flow the
surviving states back to the RR sector. In the special case that the central
charge is a multiple of three, we can use a shortcut procedure by projecting
the RR ground states directly onto q = (2n+ 1)/2, n ∈ Z.

The RR ground states can be given a geometric interpretation. As we
have mentioned in the introduction, there exists a correspondence between
the LG orbifold theory and a CY σ-model [7], thus the RR ground states of
these two theories can be related to eachother. Furthermore the RR ground
states of the σ-model correspond to differential forms on the CY manifold
[16] and their U(1)-charges relate to the hodge numbers as follows:

hp,q(M) = #RR ground states with (qL, qR) = (c/6− p, q − c/6)

Table 3 shows the results of the calculation of all RR ground states for the
example model P(1,1,1,3,3)[9] which has c = 9. The number of states displayed
in each line contributes to a hodge number, which is given in the last column.
The determination of the hodge numbers is now a simple task of adding all
these contributions.

3.5.2 B-type Landau-Ginzburg orbifolds of Fermat-type

Now we restrict ourselves to the topological sector described by B-type LG
orbifold theories of Fermat-type. As we have seen in (21), the physical spec-
trum of the B-model is given by the (a, c)-ring. The relations (7) and (8)
show that the left and right U(1)-charges have equal modulus, but opposite
sign. Since the spectral flow into the RR sector is left/right-antisymmetric,
the U(1)-charges of the RR ground states also obey q(R,R)

L = −q(R,R)

R . Apply-
ing the orbifold projection and taking into account c = 9, we get the following
condition:

q(R,R)

L = −q(R,R)

R ∈
1

2
+ Z (27)

In what follows we denote the states satisfying (27) by ’B-type RR ground
states’. Now we develop some simple rules, how to determine all B-type
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W = Φ9
1 + Φ9

2 + Φ9
3 + Φ3

4 + Φ3
5, (i, j) ∈ {1, 2, 3}, (a, b) ∈ {4, 5}

l
(
q(R,R)

L , q(R,R)

R

)
|φ0〉l(R,R)

#states hp,q(M)

0 (−3/2,−3/2) |0〉0
(R,R)

1 h3,0(M)

0 (−1/2,−1/2) Φ7
iΦ

2
j |0〉

0
(R,R)

112 h2,1(M)
Φ6
iΦ

3
j |0〉

0
(R,R)

Φ6
iΦ

2
jΦk|0〉0(R,R)

. . .
0 (1/2, 1/2) Φ7

iΦ
7
jΦ

4
k|0〉

0
(R,R)

112 h1,2(M)
Φ7
iΦ

7
jΦkΦa|0〉0(R,R)

Φ7
iΦ

5
jΦaΦb|0〉

0
(R,R)

. . .
0 (3/2, 3/2) Φ7

1Φ
7
2Φ

7
3Φ4Φ5|0〉0(R,R)

1 h0,3(M)

1 (−3/2, 3/2) |0〉1(R,R) 1 h3,3(M)
2 (−1/2, 1/2) |0〉2

(R,R)
1 h2,2(M)

3 (−1/2, 1/2) Φa|0〉3(R,R)
2 h2,2(M)

4 (−1/2, 1/2) |0〉4(R,R) 1 h2,2(M)
5 (1/2,−1/2) |0〉5

(R,R)
1 h1,1(M)

6 (1/2,−1/2) Φa|0〉6(R,R)
2 h1,1(M)

7 (1/2,−1/2) |0〉7(R,R) 1 h1,1(M)

8 (3/2,−3/2) |0〉8(R,R) 1 h0,0(M)

Table 3: RR ground states of the P(1,1,1,3,3)[9] model

RR ground states of any five-variable Fermat-type LG orbifold. Let us first
restate the formula (26) as follows:

(
J0

J̃0

)
|0〉l

(R,R)
=

(
±
∑

lqi,L /∈Z

(lqi,L − [lqi,L]− 1/2)

︸ ︷︷ ︸
A

+
∑

lqi,L∈Z

(qi,L − 1/2)

︸ ︷︷ ︸
B

)
|0〉l

(R,R)

(28)
For r = 5, equation (20) is equivalent to

5∑

i=1

lqi,L = l ∈ Z (29)

To simplify the notation we introduce index sets for untwisted and twisted
fields in the l-th sector:

Il,t = {i ∈ {1, . . . , 5} : lqi,L /∈ Z}, Il,u = {1, . . . , 5}\Il,t (30)
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A necessary condition for (27) to hold is A ∈ 1/2 + Z. We have

A ∈ 1/2 + Z
(29)
⇐⇒ ∃n ∈ Z :

∑

i∈Il,u

lqi,L = (1/2)(|Il,t|+ 1) + n

⇐⇒ |Il,t| ∈ 1 + 2Z

Furthermore |Il,t| = 1 contradicts (29) thus we get A ∈ 1/2 + Z ⇐⇒ |Il,t| ∈
{3, 5}. Let us look at the two cases separately:

1. |Il,t| = 5 ⇒ B = 0, thus |0〉l
(R,R)

is the only B-type RR ground state.

2. |Il,t| = 3 ⇒ B 6= 0: all B-type RR ground states are of the form
Φta
a Φtb

b |0〉
l
(R,R)

with a, b ∈ Il,u. They need to satisfy qL(Φta
a Φtb

b ) = −B ⇔
(ta+1)wa+(tb+1)wb = H . Additionally the exponents are constrained
by the exactness condition: ta,b < H/wa,b − 1

To summarize, all B-type RR ground states can be found by writing down
all states in each sector according to the following rules:

|Il,t| = 5 : |0〉l
(R,R)

|Il,t| = 3 : Φta
a Φtb

b |0〉
l
(R,R)

, ta,b < H/wa,b − 1
(ta + 1)wa + (tb + 1)wb = H

otherwise : no B-type RR ground states
(31)

Similar results can be found in [24]. Note that |Il,t| = n is equivalent to saying
’l divides exactly (5 − n) of the exponent numbers hi’. Thus the essential
part of finding all B-type RR ground states has been reduced to check all
sector numbers for divisors equal to the exponents in the superpotential. In
the example model shown in table 3, the sectors 3 and 6 are the only ones
having exactly two exponents as divisors. They are also the only sectors
containing B-type RR ground states of type Φta

a Φtb
b |0〉

l
(R,R)

that satisfy (27).
This confirms the rule described above.

4 D-branes in B-type LG Orbifolds

4.1 Landau-Ginzburg theories with boundaries

An ordinary Landau-Ginzburg theory based on the action (14) hasN = (2, 2)
worldsheet supersymmetry. If we consider the LG theory on a Riemann
surface with boundaries, the supersymmetry is expected to be broken down
to at most N = 2, because the left- and rightmoving sectors are tied together.
In the following we exclusively work with boundary conditions preserving
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the B-type supersymmetry. In other words, the topological D-branes shall
be invariant under the BRST symmetry of the B-model. It then turns out
that supersymmetry is completely lost at first sight due to a boundary term,
which can not be compensated by additional terms in the action containing
bulk fields. The problem can be solved by introducing a fermionic superfield

Π(x0, θ0, θ
0
) living on the boundary [25]. We have chosen coordinates such

that x0, θ0 and θ
0

span the worldsheet boundary. The covariant derivative
of this superfield introduces a boundary potential E(Φi) by

DΠ = E(Φi)

while another boundary potential J(Φi) appears in the additional boundary
action term:

S∂Σ = −
1

2

∫
dx0d2θΠ Π

∣∣∣
π

0
−
i

2

∫

∂Σ

dx0dθΠ J(Φi)θ̄=0

∣∣∣
π

0
+ c.c.

Supersymmetry is now restored under the condition

W = EJ

The boundary BRST operator is in close relationship to the superpotential
[10]:

Q2
boundary = W

The formula presented in [10] has an additional factor of i, which can be
absorbed into the superpotential. In a suitable basis, Q ≡ Qboundary can be
written as

Q(Φi) =

(
0 J(Φi)

E(Φi) 0

)
, Q2(Φi) = W (Φi) · 1 (32)

This can be generalized such that E(Φi) and J(Φi) become matrices them-
selves. We conclude that all matrix factorizations of the superpotential de-
scribe supersymmetric D-branes.

4.2 Matrix factorizations

There exists much literature on matrix factorizations. A comprehensive re-
view can be found in [26], for further information the reader is referred to
[14, 24, 25, 27]. Please note that we now change the notation for the chiral
superfields in order to be compatible to the majority of the literature on
matrix factorizations:

xi ≡ Φi
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As we have seen in the previous subsection, B-type D-branes (which are
also called B-branes in the literature) are described by matrix factorizations
of the superpotential. From a mathematical point of view, the operator Q
acts on a free Z2-graded C[xi]-module denoted by (C, ρ). In a diagonal basis,
the grading operator ρ is represented as ρ = diag (1,−1). The degree deg(A)

of an operator A : (C, ρ)→ (Ĉ, ρ̂) is defined as

deg(A) = 0 if ρ̂Aρ = A

deg(A) = 1 if ρ̂Aρ = −A

A is called even in the first and odd in the second case. Q is an odd en-
domorphism. The rank of a matrix factorization is defined as half the rank
of Q.

B-branes in LG orbifolds need to be invariant under the orbifold action.
Thus there must exist a representation of the orbifold group on the module
M , with the operator γ representing the generator g, such that the following
condition is satisfied:

γQ(ωwixi)γ
−1 = Q(xi), γH = 1 (33)

See also (19) for the orbifold action on the bulk fields. Since the orbifold group
ZH has H representations, there exist H different D-branes corresponding to
the same matrix factorization. We denote such a D-brane with (C, ρ,Q, γ).

Additionally, D-branes have to respect the vector R-symmetry. This is a
necessary condition for a conformal infrared fixed point to exist [14]. Then
there must exist an operator R such that

EQ+ [R,Q] = Q, E =

5∑

i=1

qixi
∂

∂xi
(34)

Here qi denotes the vector R-charge of the chiral field xi, as defined in (16).

Let (C, ρ,Q, γ) and (Ĉ, ρ̂, Q̂, γ̂) be two D-branes. The states representing
open strings stretching between these two D-branes are the elements of the
cohomology of the Z2-graded complex (HomC[xi]((C, ρ), (Ĉ, ρ̂)),D) with the
odd differential D defined as follows:

Dφ = Q̂φ− (−1)deg(φ)φQ (35)

The even states are worldsheet bosons and the odd states are worldsheet
fermions. Any open string state in the LG orbifold theory must be invariant
under the orbifold action:

γ̂φ(ωwixi)γ
−1 = φ(xi) (36)
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The R-charge q(φ) of an open string state φ is calculated using

Eφ+ R̂φ− φR = q(φ)φ (37)

where R and R̂ are determined by equation (34).

4.3 Rank 1 factorizations

4.3.1 Tensor product branes

Let W = xk+2 be a superpotential in one variable. The matrix factorizations

Qn(x) =

(
0 xn

xk+2−n 0

)
, n ∈ N0 (38)

are called tensor product branes, although they should be called Minimal
branes more appropriately, since they describe D-branes in Minimal models
at low energy [28]. The historical name refers to their primary use as building
blocks of higher rank factorizations. We will also use them for this purpose.
The integer n is called the degree of the matrix factorization, D-branes with
n = 1 are conventionally called linear tensor product branes. The case n = 0
can be neglected; it corresponds to the open string vacuum, which describes
the situation where there are no D-branes at all.

In the case of a one-variable superpotential, the weight of the chiral field is
always w = 1. This is no longer true for superpotentials with more variables,
therefore we need to consider general weights, so that we can later combine
multiple tensor product branes. The generator of the ZH orbifold group needs
to satisfy (33) and is thus represented as

γp,n = ωp
(

1 0
0 ωwn

)
, p ∈ {0, . . . , H − 1} (39)

where p labels the orbifold representation. In the literature it is usually
denoted by m. The computation of the R-matrix according to (34) yields

Rn =

(
1
2
− n

k+2
0

0 −1
2

+ n
k+2

)

Turning to the open string states we introduce the following notation:

φT,Bj : Bosons stretching between tensor product branes

φT,Fj : Fermions stretching between tensor product branes
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The index j enumerates the open string states. To calculate the open strings
stretching from (Q, ρ, γ) to (Q̂, ρ, γ̂), we use the formula (35) and get:

φT,Bj =

(
xj+

1
2
(|n−bn|−(n−bn)) 0

0 xj+
1
2
(|n−bn|+(n−bn))

)

j ∈ {0, . . . ,min(n, n̂, h− n, h− n̂)− 1}

φT,Fj =

(
0 x−1−j− 1

2
(|n−bn|−(n+bn))

−xh−1−j− 1
2
(|n−bn|+(n+bn))

)

j ∈ {0, . . . ,min(n, n̂, h− n, h− n̂)− 1}

Here we chose a different index convention compared to [28]. Note that we
have assumed the grading matrix to be the same on both D-branes; flipping
the sign of the grading on one brane has the single effect that the bosons
become fermions and vice versa, leaving the actual matrix representation
unchanged. The computation of the R-charges using (37) yields

q(φT,Bj ) =
2

H

(
wj +

w

2
(|n− n̂|)

)
(40)

q(φT,Fj ) = 1 +
2

H

(
w(−1− j)−

w

2
(|n− n̂|)

)
(41)

To project the open strings onto orbifold-invariant states, we need to know
the action of the orbifold generator on open strings (36):

φT,Bj 7→ ωwj+
w
2

(|n−bn|−(n−bn))+bp−pφT,Bj

φT,Fj 7→ ωw(−1−j)+ w
2

(−|n−bn|−(n−bn))+bp−pφT,Fj

Again this is only valid if the grading matrix is equal for both D-branes.
These formulas can be rewritten by inserting the R-charges (40) and (41)

φTj 7→ ω
H
2 (q(φT

j )−deg(φT
j ))−w

2
(n−bn)+bp−pφTj (42)

yielding an expression which has the same structure for bosons and fermions.

4.3.2 Permutation branes

Let W = xud1 + xvd2 be a superpotential in two variables, where u and v have
no common divisor: gcd(u, v) = 1. The matrix factorizations

QI(x) =

(
0

∏
j∈I(x

u
1 − ηjx

v
2)∏

j∈D\I(x
u
1 − ηjx

v
2) 0

)
, I ⊂ D

D = {0, . . . , d− 1}, ηj = e−iπ(2j+1)/d, j ∈ {0, . . . , d− 1}

(43)
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are called permutation branes. The integer |I| is called the degree of the
matrix factorization, D-branes with |I| = 1 are called linear permutation
branes. The case |I| = 0 describes the open string vacuum and can be
neglected. D-branes with u 6= v are usually called generalized permutation
branes. A CFT description of permutation branes is currently only known
for the case u = v = 1 with I containing a single set of successive integers
[29]. Studying the other types of permutation branes in the LG language
might be helpful to find their description in the CFT language.

Like in the case of tensor product branes, we need to consider general
weights, because later we want to combine the permutation branes with other
D-branes. Let w̃ = H/d. The generator of the ZH orbifold group needs to
satisfy (33) and is therefore represented as

γp,I = ωp
(

1 0
0 ω ew|I|

)
, p ∈ {0, . . . , H − 1} (44)

Using (34), the R-matrix is computed to be

RI =

(
1
2
− |I|

d
0

0 −1
2

+ |I|
d

)

To calculate the open string spectrum we use the following notation:

φP,Bk1,k2 : Bosons stretching between permutation branes

φP,Fk1,k2 : Fermions stretching between permutation branes

The indices k1, k2 enumerate the open string states and shall not be con-
fused with the level numbers labeling the Minimal models. The open strings
stretching from (Q, ρ, γ) to (Q̂, ρ, γ̂) are computed using (35):

φP,Bk1,k2 =




xk11 x
k2
2

∏

j∈bI\(bI∩I)

(xu1 − ηjx
v
2) 0

0 xk11 x
k2
2

∏

j∈I\(bI∩I)

(xu1 − ηjx
v
2)




k1 ∈ {0, . . . , u · |Î ∩ I| − 1}

k2 ∈ {0, . . . , v · |D\(Î ∪ I)| − 1}

φP,Fk1,k2 =




0 xk11 x
k2
2

∏

j∈bI∩I

(xu1 − ηjx
v
2)

−xk11 x
k2
2

∏

j∈D\(bI∪I)

(xu1 − ηjx
v
2) 0




k1 ∈ {0, . . . , u · |I\(Î ∩ I)| − 1}

k2 ∈ {0, . . . , v · |Î\(Î ∩ I)| − 1}
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Like for the tensor product branes, the grading matrix is assumed to be equal
on both D-branes. These expressions are consistent with the results derived
in [29] for the case u = v = 1. The evaluation of the R-charges using (37)
gives

q(φP,Bk1,k2) =
2

H

(
w1k1 + w2k2 +

w̃

2
(|(I ∪ Î)\(I ∩ Î)|)

)
(45)

q(φP,Fk1,k2) = 1 +
2

H

(
w1k1 + w2k2 −

w̃

2
(|(I ∪ Î)\(I ∩ Î)|)

)
(46)

In the case of equal grading matrices on both D-branes, the orbifold generator
acts on the open strings as follows (36):

φP,Bk1,k2 7→ ωw1k1+w2k2+ ew
2
(|(I∪bI)\(I∩bI)|−(|I|−|bI|))+bp−pφP,Bk1,k2

φP,Fk1,k2 7→ ωw1k1+w2k2+ ew
2
(−|(I∪bI)\(I∩bI)|−(|I|−|bI|))+bp−pφP,Fk1,k2

Inserting the R-charges (45) and (46) yields

φPk1,k2 7→ ω
H
2 (q(φP

k1,k2
)−deg(φP

k1,k2
))− ew

2
(|I|−|bI|)+bp−pφPk1,k2 (47)

4.4 The tensor product construction

Let W =
∑r

i=1 x
hi
i be a superpotential in r variables. The simplest way to set

up matrix factorizations for this superpotential is to combine multiple rank
1 matrix factorizations. In order to do this, we decompose W into a sum
of superpotentials in one or two variables, depending on the type of matrix
factorization we want to use for these variables:

W =

N∑

i=1

Wi

In general N 6= r, because permutation branes are defined over two variables.
Let (Ci, ρi, Qi, γi) be D-branes associated to the superpotential Wi. We use
the tensor product construction to set up a new D-brane (C = ⊗Ni=1Ci, ρ, Q, γ)
in the theory with the superpotential W . First, the matrix factorization and
the grading have the following form:

Q =
N∑

i=1

(( i−1⊗

j=1

ρi

)
Qi

( N⊗

j=i+1

1

))
(48)

ρ =

N⊗

j=1

ρi (49)
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This is the generalization of the two-variable tensor product construction
described in [28]. It corresponds to tensoring together boundary states in
the CFT language. In a second step we need to set up the orbifold generator
γ in the tensor product theory. If we would simply define γ = ⊗Ni=1γi, the
H representations of ZH would be labeled by N different numbers pi coming
from each D-brane component, and many number configurations would be
equivalent. To improve the situation we note that the representation matrices
have the same structure for all D-brane types discussed so far, namely

γi = ωpiγ̃i

Then we can consistently define γ to be

γ = ωp
N⊗

i=1

γ̃i, p ∈ {0, . . . , H − 1} (50)

Given the R-matrices Ri of the individual D-brane components, the R-matrix
of the combined D-brane is given by

R =

N∑

i=1

(( i−1⊗

j=1

ρi

)
Ri

( N⊗

j=i+1

1

))
(51)

For the open string states, the tensor product construction works in the
following way:

φ =

N⊙

i=1

φi (52)

Here ⊙ denotes the graded tensor product defined by

φ1 ⊙ φ2 := φ1ρ
deg(φ2)
1 ⊗ φ2

As a consequence, the bosons are composed of an even number of fermionic
components while the fermions contain an odd number of fermionic compo-
nents. In particular, states with only bosonic components are always bosons,
while states with only fermionic components can be either bosons or fermions,
depending on the number of D-brane components. Using the decomposition
of the R-matrix (51), one can confirm the additive nature of the R-charge:

q(φ) =
N∑

i=1

q(φi) (53)
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4.5 The phase of matrix factorizations

Now we specialize to D-branes built of tensor product branes and permu-
tation branes using the tensor product procedure described in the previous
subsection. Let us replace the orbifold label p defined in (50) by another
label M :

M = −2p−
∑

i∈IT

wini −
∑

i∈IP

w̃i|Ii| mod 2H (54)

Here the index sets IT and IP are defined such that the first sum runs over all
tensor product branes and the second over all permutation branes. M takes
either even or odd values, depending on the parameters wi, ni, w̃i and Ii
defining the D-brane. With this new label, the orbifold generator γ becomes,
using (39), (44) and (54),

γ = ω−M/2
⊗

i∈IT

(
ω−wini/2 0

0 ωwini/2

)⊗

i∈IP

(
ω− ewi|Ii|/2 0

0 ω ewi|Ii|/2

)
(55)

Now we want to write down the orbifold action on an open string state φ in
the tensor product theory. In the following we omit the indices enumerating
the open strings. Using (42), (47), (50) and (52) we get

φ 7→ ω
P

i∈IT ∪IP
(H

2
(q(φi)−deg(φi)))− 1

2(
P

i∈IT
(wini− bwibni)+

P
i∈IP

( ewi|Ii|−bewi|bIi|))+bp−pφ

We rewrite this expression using (53), (54) and deg(φ) =
∑

i∈IT ∪IP
deg(φi):

φ 7→ ω
H
2

(q(φ)−deg(φ))+ 1
2
(M−cM)φ (56)

Invariant states thus have to satisfy the following relation:

eπiq(φ)(−1)deg(φ)eπi(M−cM)/H = 1 (57)

When we define ϕ = M/H , then (57) is precisely the formula (4.35) in [14],
which is derived there without reference to any particular type of D-branes.
ϕ is called the phase of the matrix factorization. In subsection 5.3.3 we will
see that the label M will allow us to make contact with the CFT description
of D-branes.

4.6 Ramond-Ramond-charges of D-branes

D-branes are charged under the Ramond-Ramond ground states [2]. In the
CFT description, these charges are realized as overlaps of boundary states
with the RR ground states. The D-brane charge is thus essentially a n-tuple
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of complex numbers where n denotes the number of RR ground states. These
n-tuples are quantized and hence form a lattice of charges [24]. If two D-
branes have a charge tuple, which only differs by a sign, then they are said
to be antibranes of eachother.

The formula to calculate the RR-charge of B-type D-branes is presented
in [14]. Given a D-brane (C, ρ,Q, γ) and a RR ground state |φ〉l, the charge
formula reads

ch(Q, γ)(|φ〉l) =
1

|Il,u|!
ResWl

(
φ · Str

(
γl(∂Ql)

∧|Il,u|
))

(58)

Here we have Wl(xi) = W (xui , x
t
i = 0) and Q(xi) = Q(xui , x

t
i = 0), where

xui [xti] are those chiral fields which are invariant [not invariant] under the orb-
ifold action gl = ωwil. For the definition of Il,u see (30). Str( · ) = TrC(ρ · ) is
the supertrace over the Z2-graded module C. φ is defined by |φ〉l = φ|0〉l

(R,R)
.

The calculation of the term (∂Ql)
∧|Il,u| is meant to be done as follows: first

calculate the differential, afterwards apply the wedge product and finally dis-
pose of the differential form dxu1 ∧ · · · ∧ dx

u
|Il,u|

, which is already present in

the definition of the topological correlator (23).
A closer look at the charge formula reveals that the charge changes its

sign, if we flip the grading of the D-brane and leave everything else un-
changed. Thus we see that flipping the sign of the grading amounts to sending
the D-brane to its antibrane.

Now we evaluate the charge formula for the special case of five-variable
Fermat-type models and D-branes built of tensor product branes and permu-
tation branes. According to (31) there are two types of RR ground states,
to which the D-branes can couple. In the first case all fields are twisted and
using (39), (44) and (50) we find

ch(Q, γ)(|φ〉l) = Str γl = ωpl
∏

i∈IT

(1− ωwinil)
∏

i∈IP

(1− ωw̃i|Ii|l) (59)

We could have chosen to use the M-label introduced in (54), but then the
expression would become more complicated.

In the second case we have two untwisted fields and therefore the calcula-
tion is a bit more involved compared to the case discussed above. Looking at
(31), we see that the RR ground states are of the form |φ〉l = xtaa x

tb
b |0〉

l
(R,R)

.
The first observation is that the charge vanishes if the two untwisted variables
both belong to a tensor product brane:

|Il,t| = 3 and a, b ∈ IT ⇒ ch(Q, γ)(|φ〉l) = 0
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In the case that a and b belong to a permutation brane, the calculation gives:

ch(Q, γ)(|φ〉l) = ωpl
∏

i∈IT ∩Il,t

(1− ωwinil)
∏

i∈IP∩Il,t

(1− ω ewi|Ii|l)

×
w̃a
H

∑

i∈Ia

ωwa(−i−1/2)(ta+1)

Let us summarize these results:

ch(Q, γ)(|φ〉l) = Rl
Q(ta) · ω

pl
∏

i∈IT∩Il,t

(1− ωwinil)
∏

i∈IP∩Il,t

(1− ω ewi|Ii|l)

Rl
Q(ta) =





1 if |Il,t| = 5
0 if |Il,t| = 3 and a, b ∈ IT
ewa

H

∑
i∈Ia

ωwa(−i−1/2)(ta+1) if |Il,t| = 3 and a, b ∈ ĨP

|φ〉l =

{
|0〉l

(R,R)
if |Il,t| = 5

xtaa x
tb
b |0〉

l
(R,R)

if |Il,t| = 3
(60)

Here ĨP contains all indices, which belong to chiral fields associated to per-
mutation branes. In the case of linear permutation branes, this result is
equivalent to the expressions derived in [24].

We need to address a problem here. There can be situations, where a
generalized permutation brane is defined over two variables, such that in
some sectors one field is twisted and the other one is not. We want to raise
the question, whether the charge formula (58) is applicable in this situation.
It was rigorously proven in [14] only for the fully twisted case and it was
well-motivated for the fully untwisted case. Since we consider the situation
for the mixed case as unclear, we suggest not to use the charge formula for
these special D-brane configurations until this issue has been cleared.

4.7 Equivalence of D-branes

Let (C, ρ,Q, γ) and (Ĉ, ρ̂, Q̂, γ̂) be two D-branes. These are called equivalent
if there exists an invertible operator U ∈ GL(C,C[x1, . . . , xr]) such that

Ĉ = C

ρ̂ = UρU−1

Q̂ = UQU−1

γ̂ = UγU−1

Note that U ∈ GL(C,C[x1, . . . , xr]) ⇔ U ∈ GL(C,C), thus we can assume
the coefficients of the U -matrix to be complex numbers. The matrix U can
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be decomposed into an even and an odd part:

U = UB + UF , [UB, ρ] = 0, {UF , ρ} = 0

UB and UF act on D-branes as follows:

UB : (C,Q, ρ, γ) 7→ (C,UBQU
−1
B , ρ, UBγU

−1
B ) = (C,UBQU

−1
B ,−ρ, UBγU

−1
B )

UF : (C,Q, ρ, γ) 7→ (C,UFQU
−1
F ,−ρ, UFγU

−1
F ) = (C,UFQU

−1
F , ρ, UFγU

−1
F )

Here we have used the notation (C, ρ,Q, γ) to describe the antibrane of
(C, ρ,Q, γ). We call two D-branes bosonic equivalent if they are connected
by an even U -matrix and fermionic equivalent, if they are connected by an
odd U -matrix. Additionally we will also call two matrix factorizations Q
and Q̂ bosonic [fermionic] equivalent, if they are connected by an even [odd]
U -matrix, neglecting the orbifold representation.

4.7.1 Rank 1 factorizations

Let (C, ρ,Q, γ) and (Ĉ, ρ̂, Q̂, γ̂) be rank 1 D-branes and let us assume that
bases have been chosen such that

Q(xi) =

(
0 J(xi)

E(xi) 0

)
, Q̂(xi) =

(
0 Ĵ(xi)

Ê(xi) 0

)

By having a closer look at (38) and (43) we see that all the rank 1 D-branes
discussed so far satisfy the following quasihomogeneity relation

J(ωwixi) = ωenJ(xi), E(ωwixi) = ωH−enE(xi) (61)

where ñ = wn for tensor product branes and ñ = w̃|I| for permutation
branes. Using (61) we rewrite the orbifold representation (55) such that
both types of D-branes are treated in a unified manner:

γ = ω−M/2

(
ω−en/2 0

0 ωen/2

)
(62)

We ask now, under which conditions the two D-branes (C, ρ,Q, γ) and

(Ĉ, ρ̂, Q̂, γ̂) are equivalent. We first analyze the bosonic and fermionic equiv-
alence separately. In the bosonic case, UB has the form

UB =

(
u00 0
0 u11

)
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and then we find

Q̂UB = UBQ ⇔

{
Ĵ(xi) = αJ(xi)

Ê(xi) = α−1E(xi)
, α =

u00

u11
(63)

As a consequence we have ̂̃n = ñ. We use this result and (62) to analyze the
equation γ̂UB = UBγ and find:

γ̂UB = UBγ ⇔ M̂ = M (64)

Likewise, in the fermionic case, UF has the form

UF =

(
0 u01

u10 0

)

and a similar calculation like in the bosonic case yields

Q̂UF = UFQ ⇔

{
Ĵ(xi) = αE(xi)

Ê(xi) = α−1J(xi)
, α =

u10

u01

(65)

In contrast to the bosonic case, we now have the relation ̂̃n = H − ñ. This
leads to a different condition on the M-labels:

γ̂UF = UFγ ⇔ M̂ = M +H (66)

A general analysis of the equation Q̂U = UQ shows that two equivalent
rank 1 D-branes are always bosonic or fermionic equivalent. Thus we have
found the following equivalences:

UB : (C, ρ, J(xi), E(xi),M) ≃ (C, ρ, αJ(xi), α
−1E(xi),M)

UF : (C, ρ, J(xi), E(xi),M) ≃ (C,−ρ, αE(xi), α
−1J(xi),M +H)

4.7.2 Tensor products of rank 1 factorizations

Now we look at D-branes built of tensor product branes and permutation
branes. Let (C, ρ,Q, γ) and (Ĉ, ρ̂, Q̂, γ̂) be such D-branes. Again we want
to find conditions for these two D-branes to be equivalent. Note that the
combination of two tensor product branes has rank 2, while a permutation
brane has rank 1. Thus we can assume without restriction that the building
blocks of both D-branes are of the same type for each variable xi.

In the previous subsection we have found that two equivalent rank 1
D-branes are always bosonic or fermionic equivalent. Thus we make the
following ansatz for the U -matrix in the tensor product theory:

U =
⊗

i∈IT∪IP

Ui, Ui ∈ {UB, UF} (67)
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U is even, if the number of UF components is even and it is odd otherwise.
Like in the previous subsection we define ñi = wini for tensor product branes
and ñi = w̃i|Ii| for permutation branes. The orbifold representation is then
given by

γ = ω−M/2
⊗

i∈IT ∪IP

γM,i, γM,i =

(
ω−eni/2 0

0 ωeni/2

)
(68)

Now we need to distinguish two cases:

a) J(xi) 6= αE(xi) for all D-brane components

The analysis of the equation Q̂UB = UBQ leads to a straightforward answer:
the two matrix factorizations Q and Q̂ are bosonic [fermionic] equivalent, if
and only if an even [odd] number of component pairs are fermionic equivalent
and all other pairs are bosonic equivalent. We need to be more careful when
analyzing the equation γ̂U = Uγ because the factor ω−M/2 in (68) is shared
by all D-brane components. We have the following partial results:

γ̂MiUB = UBγM,i : always true (69)

γ̂MiUF = UFγM,i : never true (70)

(γ̂Mi ⊗ γ̂Mj)(UF ⊗ UF ) = (UF ⊗ UF )(γM,i ⊗ γM,j) : always true

To see the last statement use the identity a ⊗ b = −a ⊗ −b. We still have

the factors ω−M/2 and ω−cM/2 at our disposal and we have the freedom to
multiply these factors into the component equation of our choice. According
to (64) and (66) we have:

ω−cM/2γ̂Mi · UB = UB · ω
−M/2γM,i ⇔ M̂ = M (71)

ω−cM/2γ̂Mi · UF = UF · ω
−M/2γM,i ⇔ M̂ = M +H (72)

The strategy is now as follows: if the number of fermionic equivalent com-

ponent pairs is even [odd], multiply the factors ω−M/2 and ω−cM/2 into a
component equation of type (69) [(70)] and derive the condition on the M-
labels from (71) [(72)]. Summarizing the results, we have found the following
equivalences:

[U, ρ] = 0 : ĴA(xi) = αAEA(xi)

ÊA(xi) = α−1
A JA(xi)

, |{A}| even

ĴB(xi) = αBJB(xi)

ÊB(xi) = α−1
B EB(xi)

, |{B}| = |IT ∪ IP | − |{A}|

M̂ = M, ρ̂ = ρ

(73)
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{U, ρ} = 0 : ĴA(xi) = αAEA(xi)

ÊA(xi) = α−1
A JA(xi)

, |{A}| odd

ĴB(xi) = αBJB(xi)

ÊB(xi) = α−1
B EB(xi)

, |{B}| = |IT ∪ IP | − |{A}|

M̂ = M +H, ρ̂ = −ρ

(74)

The condition |{B}| = |IT ∪IP |−|{A}| just ensures that all component pairs
are equivalent at all.

When we have defined D-branes as objects denoted by (C, ρ,Q, γ), we
were not too precise, because we actually should define D-branes as equiv-
alence classes of these objects. An interesting question is, if there is some
natural set of representatives for these classes. Let (C, ρ,Q, γ) be an arbi-
trary D-brane built of tensor product branes and permutation branes. The
relations (73) show that we get an equivalent D-brane, if we swap J(xi) and
E(xi) in an even number of component D-branes and leave M and ρ un-
changed. The relations (74) imply that swapping J(xi) and E(xi) an odd
number of times and changing M to M+H and ρ to −ρ also yields an equiv-
alent D-brane. Thus we can always find a representative with ñi < H/2 for
all D-brane components. In fact, let {[(C, ρ,Q, γ)]} denote the set of equiva-
lence classes, then we have the following one-to-one correspondence between
these classes and a set of labels:

{[(C, ρ,Q, γ)]} ≃ ({ñi : ñi < H/2},M,±) (75)

Here the ± sign represents the choice of the grading.

b) J(xi) = αE(xi) for at least one D-brane component

In the case that a rank 1 matrix factorization is equivalent to another one
with J(xi) = αE(xi), the equivalence is both bosonic and fermionic at the
same time. Thus we can specialize the relations (73) and (74) as follows:

[U, ρ] = 0 : ĴA(xi) = αAEA(xi)

ÊA(xi) = α−1
A JA(xi)

, |{A}| arbitrary

ĴB(xi) = αBJB(xi)

ÊB(xi) = α−1
B EB(xi)

, |{B}| = |IT ∪ IP |+ |Ĩ| − |{A}|

Ĩ = {a ∈ IT ∪ IP : Ja(xi) = αEa(xi)}

M̂ = M, ρ̂ = ρ
(76)
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{U, ρ} = 0 : ĴA(xi) = αAEA(xi)

ÊA(xi) = α−1
A JA(xi)

, |{A}| arbitrary

ĴB(xi) = αBJB(xi)

ÊB(xi) = α−1
B EB(xi)

, |{B}| = |IT ∪ IP |+ |Ĩ| − |{A}|

Ĩ = {a ∈ IT ∪ IP : Ja(xi) = αEa(xi)}

M̂ = M +H, ρ̂ = −ρ
(77)

Again the condition |{B}| = |IT ∪IP |+|Ĩ|−|{A}| ensures that all component

pairs are equivalent. The introduction of the set Ĩ was necessary because we
would get overcounting otherwise.

Let us again study the equivalence classes. If we swap J(xi) and E(xi) in
an arbitrary number of component D-branes, we get equivalent D-branes in
two ways: one is to leave M and ρ unchanged (76) and the other is to change
M to M +H and ρ to −ρ (77). A first consequence is that we get a special
type of equivalence, which was not present in the case a):

(C, ρ,Q,M) ≃ (C,−ρ,Q,M +H) (78)

This relation says that the operation M 7→ M +H is equivalent to sending
the D-brane to its antibrane. As a second consequence we see that we can
always find a representative for each equivalence class, which has ñi ≤ H/2
for all D-brane components and a specific choice of grading. Therefore the set
of equivalence classes is in a one-to-one correspondence with a set of labels,
as follows:

{[(C, ρ,Q, γ)]} ≃ ({ñi : ñi < H/2},M,+) (79)

4.8 Reducible D-branes

A D-brane (C, ρ,Q, γ) is called reducible, if there exists a module subspace

C̃ ( C, C̃ 6= {0} that is invariant under ρ, Q and γ. It is called irreducible
if such a subspace does not exist. A reducible D-brane splits up into several
components, which are sometimes called resolved D-branes. In terms of ma-
trix representations, reducibility means that the matrices representing ρ, Q
and γ are equivalent to matrices having the same block-diagonal structure.
All rank 1 factorizations are irreducible, because Q and ρ do not commute
and therefore are not simultaneously diagonalizable. The same argument
does not go over to higher rank factorizations, because these matrices can
be block-diagonal without actually being diagonal. In the following we will
determine, under which conditions the tensor product of two rank 1 factor-
izations is reducible.
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Let us consider the superpotential W (x1, x2) = η1W1(x1) + η2W2(x2)
with η1, η2 ∈ {±1}. Furthermore let (C1, ρ1, Q1, γ1) and (C2, ρ2, Q2, γ2) be
two rank 1 D-branes defined by

Q1(x1) =

(
0 J1(x1)

E1(x1) 0

)
, Q2

1(x1) = η1W1(x1) · 1, ρ1 =

(
1 0
0 −1

)

Q2(x2) =

(
0 J2(x2)

E2(x2) 0

)
, Q2

2(x2) = η2W2(x2) · 1, ρ2 =

(
1 0
0 −1

)

Like in subsection 4.7.1 we assume the following quasihomogeneity relations:

Ja(ω
waxa) = ωenaJa(xa), E(ωwaxa) = ωH−enaEa(xa), a ∈ {1, 2}

We are interested in the tensor product of these two D-branes. Using (48)
and (49) we find

Q = Q1 ⊗ 1 + ρ1 ⊗Q2, ρ = ρ1 ⊗ ρ2

We write Q and ρ as 4× 4-matrices in the canonical tensor product basis:

Q =




0 J2(x2) J1(x1) 0
E2(x2) 0 0 J1(x1)
E1(x1) 0 0 −J2(x2)

0 E1(x1) −E2(x2) 0


 , ρ =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




(80)
We want to know, whether this Q-matrix is equivalent to a blockdiagonal
matrix factorization Q̂. The fermionic nature of Q̂ dictates its form:

Q̂ =




0 A(x1, x2) 0 0
W (x1,x2)
A(x1,x2)

0 0 0

0 0 0 B(x1, x2)

0 0 W (x1,x2)
B(x1,x2)

0




We are thus seeking a matrix U such that

Q̂U = UQ, U ∈ GL(C) (81)

We restrict ourselves to bosonic U -matrices and make the following ansatz:

U =




u00 0 0 u03

0 u11 u12 0
0 u21 u22 0
u30 0 0 u33



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(81) can now be analyzed as a system of 16 equations with the additional
requirement that U should be a regular matrix. As a first intermediate result,
we find that (81) can only be satisfied if the following condition holds

Ja(xa) = αaηaEa(xa), a ∈ {1, 2} (82)

for some αa ∈ C. The factor αa can be transformed away by an equivalence
transformation, thus we can assume αa = 1 without restriction. When we
look at the definition of tensor product branes (38) and permutation branes
(43) we find that (82) can only be satisfied if both D-branes are tensor product
branes with ni = H/(2wi). In this case we find after some more calculations
that the U -matrix becomes

U =




u00 0 0 ǫη̃u00

0 u00 −ǫη2η̃u00 0
0 u21 ǫη2η̃u21 0

η2u21 0 0 −ǫη2η̃u21


 , η̃ = i(1+η1η2)/2, ǫ ∈ {±1}

(83)
Using this matrix we transform the matrix factorization and the grading
given in (80):

Q̂ = UQU−1 =




0 a(x1, x2) 0 0
b(x1, x2) 0 0 0

0 0 0 a(x1, x2)
0 0 b(x1, x2) 0




ρ̂ = UρU−1 = ρ

a(x1, x2) = J2(x2) + ǫη1η̃J1(x1)

b(x1, x2) = η2(J2(x2)− ǫη1η̃J1(x1))

(84)

The conditions (82) are equivalent to ñ1 = ñ2 = H/2, since we can restrict
ourselves to tensor product branes. Using this and (68) we can write down the
orbifold representation in the canonical tensor product basis and transform
it using the U -matrix:

γ = ω−M/2




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 ⇒ γ̂ = UγU−1 = γ (85)

(84) and (85) demonstrate that the original D-brane is indeed reducible un-
der the conditions (82). It is also true that these conditions are sufficient for
a tensor product of two tensor product branes to be reducible. We should
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recall that all these results have been derived under the restriction that the
U -matrix is bosonic. In the case discussed above we do not expect any qual-
itatively new results, when more general U -matrices are taken into account,
although we have not carried out the calculation explicitely. On the other
hand, there are new effects coming in, when we consider tensor products of
more than two rank 1 D-branes. In this situation it can happen that there
are multiple ways of grouping the rank 1 D-branes into pairs, which satisfy
the reducibility condition (82).

Let us make an example with the superpotential W (x1, x2) = xh1
1 + xh2

2

where both exponents are even. We consider a D-brane defined by

Q =

(
0 x

h1/2
1

x
h1/2
1 0

)
⊗

(
1 0
0 1

)
+

(
1 0
0 −1

)
⊗

(
0 x

h2/2
2

x
h2/2
2 0

)

ρ =

(
1 0
0 −1

)
⊗

(
1 0
0 −1

)

It satisfies the reducibility condition (82). Using (84) there exists a basis
such that the D-brane is described by

Q̂ =

(
0 x

h2/2
2 + ix

h1/2
1

x
h2/2
2 − ixh1/2

1 0

)
⊕

(
0 x

h2/2
2 − ixh1/2

1

x
h2/2
2 + ix

h1/2
1 0

)

ρ̂ =

(
1 0
0 −1

)
⊕

(
1 0
0 −1

)

Here we have used an equivalence transformation to make the second grading
matrix equal to the first one. We see that the original D-brane is equivalent
to a direct sum of generalized permutation branes. This was already observed
in [24].

4.9 Connection to the CFT language

Let W =
∑r

i=1 x
ki+2
i be a Landau-Ginzburg superpotential of Fermat-type

and let (C, ρ,Q, γ) be a B-type D-brane which only contains tensor product
branes as components. We want to make contact with the CFT description
of these D-branes in the corresponding Gepner model. In [15] each D-brane is
uniquely described by the symbol BL,M,S,ψ, although some of the labels only
exist when certain conditions are met. We have the following information on
these four labels:

1. L = (L1, . . . , Lr) with 0 ≤ Li ≤ ki/2. Let S = {i : Li = ki/2}.

2. M ∈ Z2H with M =
∑r

i=1wiLi mod 2.
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3. S ∈ {0, 2}. This label does only exist if |S| = 0.

4. ψ ∈ {+,−}. This label does only exist if S 6= ∅ and if |S| is even

5. A D-brane is mapped to its antibrane by S 7→ S + 2, if the S-label
exists, or by M 7→M +H otherwise.

We want to compare the Landau-Ginzburg description of these D-Branes
with their CFT description under the following identification of labels (see
(75) and (79) for notations):

{i ∈ IT : ñi = H/2} ≡ S

(ñi/wi,M,±) ≡ (Li + 1,M, S ∈ {0, 2}) if |S| = 0

(ñi/wi,M,+) ≡ (Li + 1,M) if |S| > 0

(ñi/wi,M,−) ≡ (Li + 1,M +H) if |S| > 0

(86)

This identification should be understood as being valid up to an exchange of
the ± signs. Checking the five properties using (54), (75), (78) and (79), we
see that the identification works out well. The only appararent incompati-
bility is that the ψ-label has not been matched in the LG description. This
label is used in the CFT description to mark irreducible D-branes which are
constructed by splitting special types of reducible D-branes. Towards the
end of this document we will come back to this issue.

Additionally we have checked that the equivalence relations (73), (74),
(76) and (77) are compatible with the corresponding identifications presented
in [15]. For a single tensor product brane with L = 0, the label identification
(86) is consistent with the one shown in [30] (up to a conventional sign). See
also [29] for a LG-CFT-identification of permutation branes in unorbifolded
Landau-Ginzburg theories.

5 Orientifolds in B-type LG Orbifolds

5.1 B-Parities in Landau-Ginzburg theories

Let x±, θ±, θ
±

be coordinates of a (2, 2) superspace, as introduced in subsec-
tion 3.1. The parity compatible with the B-type topological twist (B-parity)
is defined as [31]

Ω : (x±, θ+, θ−, θ
+
, θ

−
) 7→ (x∓, θ−, θ+, θ

−
, θ

+
) (87)

Ω is called worldsheet parity. It transforms the covariant derivatives, defined
in (12), asD+ ↔ D−, D+ ↔ D−, thus we see from (13) that chiral superfields
are mapped to chiral superfields.
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In N = (2, 2) Landau-Ginzburg theories, the worldsheet parity is dressed
with an action on the chiral superfields denoted by τ . The resulting parity
P thus has the form

P = τΩ

We want P to be a symmetry of the Landau-Ginzburg action (14). In the
following we assume the kinetic term to be invariant under parity (usually
the Kähler potential K(Φi,Φi) in the kinetic term is chosen, such that the
target space is flat euclidean space). Let us focus on the F-terms containing
the superpotential:

SF =

∫
d2zdθ+dθ−W (Φi) + c.c.

From (87) we see that

Ω(dθ+dθ−) = dθ−dθ+ = −dθ+dθ−

and thus Ω∗(SF ) = −SF . If we want SF to be invariant under the parity P ,
we have to require that τ acts holomorphically on the superchiral fields such
that the superpotential transforms with a minus sign:

τ ∗W (Φi) = W (τΦi) = −W (Φi)

In unorbifolded Landau-Ginzburg theories the parity has to be involutive.
This condition can be relaxed in the case of Landau-Ginzburg orbifolds. In
this case, parities are elements of an orbifold group extension Γ̂ [11]

Γ→ Γ̂
π
→ Z2

where Γ ∼= ZH is the orbifold group. More precisely, a parity is an element
P ∈ Γ̂ such that π(P ) is the non-trivial element of Z2, while a general element
of the orbifold group has trivial image in Z2. Such a parity does only have
to be involutive up to an orbifold action: P 2 ∈ Γ.

Let us again switch the notation for the superchiral fields: xi ≡ Φi.
In Landau-Ginzburg orbifolds with superpotential W =

∑r
i=1 x

h
i , the most

general B-parities are of the form Pm,σ,c = τm,σ,cΩ = τ̃m,σ g
c Ω with

τ̃m,σ : xi 7→ ωwi(
1
2
+mi)xσ(i), mi +mσ(i) = 0 mod

H

wi
, mi ∈ Z

Γ ∋ gc : xi 7→ ωwicxi, c ∈ {0, . . . , H − 1}
(88)

where σ denotes a permutation of the chiral fields with maximal cycle length 2
[15]. See figure 1 for a visualization of the group Γ̂ containing the parities

37



Figure 1: The orbifold group extension Γ̂

defined in (88). Orientifolds built of B-parities with σ 6= id are called permu-
tation orientifolds. The weights of the chiral fields exchanged by σ need to
be equal, because the parity should respect the R-symmetry:

wi = wσ(i) (89)

5.2 Parity action on D-branes

5.2.1 Parities as functors

In section 4.2 we have seen that B-type D-branes are described by objects
denoted by (C, ρ,Q, γ). The collection of these objects forms a triangulated
category, the open strings are the morphisms in this category [12, 14]. There
is a canonical functor in this category, the shift functor, which we will need
in the following:

[1] : (C, ρ,Q, γ) 7→ (C,−ρ,Q, γ)

This functor simply maps all D-branes to their antibranes.
Now we want to let the parities act on D-branes. A parity maps each

D-brane of a category to some mirror D-brane, so this suggests to define the
parity action on D-branes as a functor. The implementation of this functor
has been worked out in [11]:

P(τ) : (C, ρ,Q, γ) 7→ (C∗, ρT ,−τ ∗QT , χγ−T ) (90)

Here τ belongs to one of theH parities P ∈ Γ̂\Γ. C∗ denotes the dual module
of C. ( · )T denotes the operation of graded transposition which is the analog
of the conventional transposition for graded vector spaces. When doing ac-
tual calculations involving the graded transposition, there is a high potential
for making sign errors; thus we suggest to the reader to carefully read the
review on graded vector spaces presented in [11] prior to doing calculations.
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Note that the rules given there for performing the graded transposition as-
sume a specific matrix representation of the grading operator. ( · )−T denotes
the composition of inversion and graded transposition, which commute for
even operators such as the orbifold representation. Finally the character
χ : Γ→ Cx can be used to dress the parity action on the orbifold represen-
tation. χ corresponds to the quantum symmetry in Gepner models [15]. The
parity functor also acts on the open strings:

P(τ) : HomC[xi](C1, C2)
Γ → HomC[xi](C

∗
2 , C

∗
1)

Γ

φ 7→ τ ∗φT
(91)

The superscript Γ is used here to describe Γ-invariant morphisms.
We can build a second parity functor A P(τ) by composing P(τ) with

the shift functor:

A P(τ) = [1] ◦P(τ) : (C, ρ,Q, γ) 7→ (C∗,−ρT ,−τ ∗QT , χγ−T ) (92)

The action on open strings remains unchanged.
We are interested to calculate the mirror images of D-branes, which are

built of rank 1 factorizations. A very useful relation in this context is

(A1 ⊗ A2)
T = AT1 ⊗ A

T
2

In the case that the parity does not exchange any chiral fields, then this
relation states that the mirror image of a tensor product of rank 1 factor-
izations is equal to the tensor product of their mirror images. We can then
restrict ourselves to study the parity action on rank 1 factorizations. In the
case that the parity exchanges some chiral fields, we also need to consider
the rank 2 factorizations in these variables, namely tensor products of two
tensor product branes.

5.2.2 Parity action on tensor product branes

a) Orientifolds with σ = id

Let us focus on a Landau-Ginzburg orbifold in one variable with superpoten-
tial W = xk+2 = xh and weight w = H/h not restricted to be unity. In the
following we will use the term ’parity’ not only for the total parity P , but
also for the internal part τ . According to (88) we have the following parities
with σ = id:

τm,c : x 7→ ωw( 1
2
+m+c)x

As we have seen in (90) and (92), the parity action on the orbifold represen-
tation can be dressed by a character χ. For our orbifold group Γ = ZH , it is
just a phase factor: χ = ω−Mχ, Mχ ∈ {0, . . . , H − 1}.
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Let (C, ρ,Q, γ) be a tensor product brane. According to (38) and (39),
the matrix factorization and the orbifold representation are described by

Qn =

(
0 xn

xh−n 0

)
, γp,n = ωp

(
1 0
0 ωwn

)

The corresponding quantities of the mirror D-brane are computed to be

−τ ∗QT
n =

(
0 βxh−n

β−1xn 0

)
, β = −ω−w( 1

2
+m+c)n

χγ−Tp,n = ω−Mχ−p

(
1 0
0 ωw(h−n)

)
(93)

where we have used ωwh = ωH = 1. (63) shows that the factors β and β−1

can be transformed away by an equivalence transformation, leaving a tensor
product brane in the standard representation.

b) Orientifolds with σ 6= id

Let W = xk1+2
1 + xk2+2

2 = xh1
1 + xh2

2 be a superpotential in two variables. We
want to consider Orientifolds which exchange both chiral fields. Due to (89)
we require w = w1 = w2. Then we have the following parities:

τm1,m2,c : (x1, x2) 7→ (ωw( 1
2
+m1+c)x2, ω

w( 1
2
+m2+c)x1)

Let (C, ρ,Q, γ) be a tensor product of two tensor product branes. Using (38),
(39), (48) and (50) the matrix factorization and the orbifold representation
are given by

Qn1,n2 =

(
0 xn1

1

xh1−n1
1 0

)
⊗ 1 + ρ1 ⊗

(
0 xn2

2

xh2−n2
2 0

)

γp,n1,n2 = ωp
(

1 0
0 ωwn1

)
⊗

(
1 0
0 ωwn2

)

Acting with the parity on these quantities yields

−τ ∗QT
n1,n2

=

(
0 β1x

h1−n1
2

β−1
1 xn1

2 0

)
⊗ 1 + ρ1 ⊗

(
0 β2x

h2−n2
1

β−1
2 xn2

1 0

)

βi = −ω−w( 1
2
+mi+c)ni

χγ−Tp,n1,n2
= ω−Mχ−p

(
1 0
0 ω−wn1

)
⊗

(
1 0
0 ω−wn2

)
(94)

The factors βi can be transformed away, thus the resulting D-brane is again a
tensor product of two tensor product branes in the standard representation,
except that the first D-brane component contains the x2 field, while the
second contains the x1 field.
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5.2.3 Parity action on permutation branes

a) Orientifolds with σ = id

Let W = xh1
1 + xh2

2 = xud1 + xvd2 be a superpotential in two variables. The
parities with σ = id are the following:

τm1,m2,c : (x1, x2) 7→ (ωw1(
1
2
+m1+c)x1, ω

w2(
1
2
+m2+c)x2)

Let (C, ρ,Q, γ) be a permutation brane. According to (43) and (44), the
matrix factorization and the orbifold representation are given by

QI =

(
0

∏
j∈I(x

u
1 − ηjx

v
2)∏

j∈D\I(x
u
1 − ηjx

v
2) 0

)
, γp,I = ωp

(
1 0
0 ω ew|I|

)

In the calculation of the parity action we need the following intermediate
result:

ω ewaηj = ω ewae−iπ(2j+1)/d = ω ewaω ew(−j− 1
2
) = ω ew(−(j−a)− 1

2
) = ηj−a

The matrix factorization and the orbifold representation of the mirror D-
brane are now calculated to be

−τ ∗QT
I =

(
0 β1

∏
j∈D\I(x

u
1 − ηj∗x

v
2)

β−1
1

∏
j∈I(x

u
1 − ηj∗x

v
2) 0

)

j∗ = j +m1 −m2 mod d

β1 = −ω− ew( 1
2
+m1+c)|I|

χγ−Tp,I = ω−Mχ−p

(
1 0
0 ω− ew|I|

)
(95)

The β1 factors can be transformed away, the resulting D-brane is again a per-
mutation brane in the standard representation. Interestingly, the mi-labels
act nontrivially on the matrix factorization. They had no effect when acting
on tensor product branes.

a) Orientifolds with σ 6= id

Let W = xh1
1 + xh2

2 be a superpotential in two variables. The parities with
σ 6= id are the following:

τm1,m2,c : (x1, x2) 7→ (ωw( 1
2
+m1+c)x2, ω

w( 1
2
+m2+c)x1)

Again we require w = w1 = w2 due to (89). The matrix factorization and
orbifold representation are the same as in the previous case. We need the
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following intermediate results:

ηjηh−1−j = 1
∏

j∈I(−ηj)
∏

j∈D\I(−ηj) =
∏

j∈D(−ηj) =
∏d−1

j=0(−ηj) = 1

Here we have defined h = h1 = h2. The parity action on the matrix factor-
ization and the orbifold representation gives the following result:

−τ ∗QT
I =

(
0 β2

∏
j∈D\I(x

u
1 − ηj∗x

v
2)

β−1
2

∏
j∈I(x

u
1 − ηj∗x

v
2) 0

)

j∗ = h− 1− (j +m1 −m2) mod h

β2 =
(∏

j∈I(−ηj)
)−1

(−ω− ew( 1
2
+m2+c)|I|)

χγ−Tp,I = ω−Mχ−p

(
1 0
0 ω− ew|I|

)
(96)

The β2 factors can be transformed away, leaving a permutation brane in
the standard representation. Like in the case σ = id, the mi-labels act
nontrivially on the matrix factorization.

5.3 Parity-invariant D-branes

5.3.1 The category of parity-invariant D-branes

Our final goal is to construct consistent spacetime-supersymmetric Orien-
tifold backgrounds with D-branes. Such a background does only include
D-branes which are invariant under the parity associated to the Orientifold.
Therefore it is useful to define a new category, which only contains invariant
D-branes. This construction was carried out in [11].

Let (C, ρ,Q, γ) be an object of the D-brane category, let P(τ) be one
of the two parity functors introduced in (90) and (92): P(τ) = P(τ) or
P(τ) = A P(τ). This D-brane is called an invariant D-brane, if it is equiva-
lent to its mirror images under the parities P(τ). More precisely, there exists
an equivalence transformation U(τ) such that

U(τ) · P(τ)((ρ,Q, γ)) · U(τ)−1 = (ρ,Q, γ) (97)

For P(τ) = P(τ) the equivalence is bosonic, for P(τ) = A P(τ) it is
fermionic. In fact, we are not too precise here, because the module asso-
ciated to the mirror D-brane is the dual of C, but for a strict equivalence the
modules should be the same. We will nevertheless use the term ’equivalence’
in this slightly generalized sense. Invariant D-branes are now described by a
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Figure 2: The parity action on open strings

quintuple (C, ρ,Q, γ, U(τ)) and become objects of a new category, the cate-
gory of parity-invariant D-branes. The morphisms in this new category are
derived trivially from the ones in the standard D-brane category. Now we
define parity functors P̃ in the new category:

P̃ : (C, ρ,Q, γ, U) 7→ (C, ρ,Q, γ, U)

Their action on open strings stretching between (C1, ρ1, Q1, γ1, U1(τ)) and
(C2, ρ2, Q2, γ2, U2(τ)) is defined as follows:

P̃ : HomC[xi](C1, C2)
Γ → HomC[xi](C2, C1)

Γ

φ 7→ U1(τ) · P(τ)(φ) · U2(τ)
−1

It was shown in [11] that this map is independent of τ . See figure 2 for

a graphical illustration of the parity action on open strings. P̃ should be
an involution in the category of invariant D-branes. Thus we require the
following condition to hold:

P̃2(φ)
!
= φ

As demonstrated in [11], this requirement of involutivity yields another con-
dition, namely that

U(τ)(U(τ)−1)T ιγ(τ 2)−1 !
= c(τ) · idC (98)

43



holds for any invariant D-brane (C, ρ,Q, γ, U(τ)). ι : C → C∗∗ is the canoni-
cal isomorphism, which in the standard basis has the matrix representations
ι = diag (1,−1) for P(τ) = P(τ) and ι = diag (1, 1) for P(τ) = A P(τ).
γ(τ 2) is the operator associated to the orbifold group element τ 2. c(τ) is a
phase factor, whose meaning will be explained below. Note that for fermionic
U ’s we have (U(τ)−1)T = −(U(τ)T )−1; we could have defined (98) using the
opposite ordering of inversion and graded transposition, the additional sign
would have been absorbed into c(τ). In [11] it was shown that the relation

c(τ)2χ(τ 2) = 1 (99)

holds and that the function c(τ) is determined by the choice of the parity,
up to a sign. Thus every category of invariant D-branes exists in two incar-
nations, parametrized by c(τ). We will see in subsection 5.5 that c(τ) deter-
mines the sign of the Ramond-Ramond charge of the Orientifold. Therefore
by choosing one of the two categories we choose the sign of the RR-charge
of the Orientifold. There is another point we should mention: equation (98)
contains the U -matrices, which are D-brane-specific, so if we select one of the
two categories, then one part of the D-branes satisfies (98) completely and
the other part satisfies the relation only up to a sign. The latter D-branes
are therefore not contained in the selected category. This selection rule will
not be present anymore, as soon as we include the external spacetime dimen-
sions. Rather we will see in subsection 5.4 that the selection rule will turn
into a rule determining the gauge group of the D-brane.

5.3.2 Invariance conditions

Now we again turn to the Fermat-models and to D-branes built of tensor
product branes and permutation branes. To determine whether a D-brane is
invariant under the parities P(τ), we need to check, whether it is equivalent to
its mirror images under these parities. In section 4.7 we have analyzed, under
which conditions two D-branes are equivalent to eachother, and in section 5.2
we have computed the mirror images of all D-branes we are interested in. So
we have all tools at our disposal to analyze the parity invariance of these
D-branes.

In a first step we want to find out, how the orbifold label M defined in
(54) transforms under parities. Let us again set ñi = wini for tensor product
branes and ñi = w̃i|Ii| for permutation branes. Equation (54) then reads

M = −2p−
∑

i∈IT∪IP

ñi mod 2H
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The results (93), (94), (95) and (96) show that the orbifold label p is always
sent to −Mχ − p. Additionally we see that ñi is sent to H − ñi. Thus we
have

P(τ)(M) = 2(p+Mχ)−
∑

i∈IT ∪IP

(H − ñi) mod 2H

⇒ M + P(τ)(M) = 2Mχ +NH mod 2H

where N is again the number of D-brane components. Therefore the M-label
transforms under any parity as follows:

M 7→ P(τ)(M) = 2Mχ +NH −M mod 2H (100)

Let (C, ρ,Q, γ) be a D-brane built of tensor product branes and permuta-
tion branes. In the following we call a D-brane bosonic [fermionic] invariant
under a parity, if it is bosonic [fermionic] equivalent to its mirror image. Like-
wise we will call a matrix factorization Q bosonic [fermionic] invariant, if it
is bosonic [fermonioc] equivalent to its mirror image P(τ)(Q), neglecting the
orbifold representation. Now we define the following numbers:

NB = |{i ∈ IT ∪ IP : Qi is bosonic invariant}|

NF = |{i ∈ IT ∪ IP : Qi is fermionic invariant}|

NBF = |{i ∈ IT ∪ IP : Qi is bosonic and fermionic invariant}|

Let us consider the two functors defined in (90) and (92) separately:

1. P(τ) = P(τ):
Here we have only bosonic invariant D-branes. (73) and (76) imply that
we have P(τ)(M) = M and either NBF = 0, NF ∈ 2Z or NBF ≥ 1.
Using (100) we get the following condition on the M-label:

M + a2H = 2Mχ +NH −M ∀a ∈ Z

⇒ M ∈

{
Mχ +N

H

2
,Mχ + (N + 2)

H

2

}
mod 2H

2. P(τ) = A P(τ):
Here we have only fermionic invariant D-branes. Using (74) and (77)
we see that A P(τ)(M) = M +H and either NBF = 0, NF ∈ 2Z + 1
or NBF ≥ 1. By the relation (100) we have

M +H + a2H = 2Mχ +NH −M ∀a ∈ Z

⇒ M ∈

{
Mχ + (N + 1)

H

2
,Mχ + (N + 3)

H

2

}
mod 2H
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Mat. fac. & bosonic fermionic bos. & ferm.
Parity invariance invariance invariance

TP n = h/2 always n = h/2
σ = id
TP⊗TP never never never
σ 6= id
Perm ηj ∈ I ⇔ ηj∗ ∈ D\I ηj ∈ I ⇔ ηj∗ ∈ I never
σ = id j∗ = j +m1 −m2 mod d
Perm ηj ∈ I ⇔ ηj∗ ∈ D\I ηj ∈ I ⇔ ηj∗ ∈ I never
σ 6= id j∗ = h− 1− (j +m1 −m2) mod h

Table 4: Conditions for parity invariance of rank 1 matrix factorizations

Let us summarize these results. A D-brane is parity-invariant if the following
conditions hold:

P(τ) = P(τ) : NBF = 0, NF even or NBF ≥ 1

M ∈

{
Mχ +N

H

2
,Mχ + (N + 2)

H

2

}
mod 2H

P(τ) = A P(τ) : NBF = 0, NF odd or NBF ≥ 1

M ∈

{
Mχ + (N + 1)

H

2
,Mχ + (N + 3)

H

2

}
mod 2H

(101)
In order to determine the numbers NB, NF and NBF we need to find out,
under which conditions the rank 1 matrix factorizations are parity-invariant.
This is done by analyzing their mirror images described in (93), (94), (95),
(96) and comparing these expressions with those of the original D-brane. The
result of this analysis is shown in table 4.

5.3.3 Comparison with CFT results

We want to compare (101) with the CFT-based results presented in [15].
Thus we need to specialize the invariance conditions to the case of a five-
variable LG orbifold theory, a parity with σ = id and D-branes built of
tensor product branes only. Then we also have N = 5. Looking at the first
row in table 4 we see that bosonic invariance implies fermionic invariance in
this case. Then the conditionNBF = 0, NF ∈ 2Z is never satisfied. Therefore
NBF = 0 implies NF ∈ 2Z + 1. Putting everything together we get

P(τ) = P(τ) : M ∈ {Mχ ±H/2} mod 2H, NBF ≥ 1

P(τ) = A P(τ) : M ∈ {Mχ,Mχ +H} mod 2H,
(102)
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Comparing these conditions with the formulas (6.16) and (6.17) in [15], we
find agreement up to the following incompatibilities:

• In [15] we have the condition NBF = 1 instead of NBF ≥ 1. This can be
explained by observing that D-branes are reducible if NBF > 1 holds.
The formulas (6.16) and (6.17) are only valid for irreducible D-branes.

• The condition distinguishing the two cases are not the same in both
languages. In (102) we have the two functors, which select the two
cases, while in [15] the distinction is made by the mi-labels defined
in (88). At first sight this seems to be a real incompatibility. On
the other hand we want to emphasize that the conditions in [15] are
formulated after performing a full GSO-projection, which mixes the
spin-structures. In the Landau-Ginzburg approach we only make a
partial GSO projection by projecting onto integral U(1)-charges in the
NSNS sector. Additionally the spin structures are kept fixed in the
Landau-Ginzburg approach [25]. Therefore it should not come as a
surprise that the matching between both languages is nontrivial under
these circumstances. This issue is left open for future research.

5.4 D-brane gauge groups

As we have seen in section 4.8, a reducible D-brane splits up into several
irreducible ones. If the original reducible D-brane is parity-invariant, then
the irreducible components do not have to be parity-invariant themselves. In
this case these resolved D-branes are mapped to eachother by the parities.
Thus all invariant D-branes can be built as a direct sum of two types of
invariant D-branes: those which are irreducible and those which are direct
sums of a non-invariant D-brane and its parity image.

Now we want to bring the external dimensions into play. We need to
define an external Chan-Paton space carrying the boundary degrees of free-
dom associated to the external spacetime dimensions. As is well known [32],
the external Chan-Paton degrees of freedom are gauge degrees of freedom.
D-branes, which are direct sums of non-invariant D-branes, carry the gauge
group U(N), where N is the number of identical D-branes stacked together.

The situation is different for irreducible parity-invariant D-branes. In this
case we expect on general grounds that the gauge group is either O(N) or
SP (N/2) for a stack of N identical D-branes. For odd N the symplectic
group is excluded. Now we would like to find out, how this case distinction
shows up in the Landau-Ginzburg language. This was again developed in
[11]. In section 5.3.1 we have seen that a parity functor in the category
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of invariant D-branes is involutive if the following condition holds for every
invariant D-brane:

U(τ)(U(τ)−1)T ιγ(τ 2)−1 !
= ǫc0(τ) · idC (103)

Here c0(τ) is a function fixed by the chosen parity and ǫ ∈ {±1} selects
one of the two categories of invariant D-branes. For an invariant D-brane
(C, ρ,Q, γ, UQ(τ)) we calculate the left hand side of (103) and we get

UQ(τ)(UQ(τ)−1)T ιγ(τ 2)−1 = ǫQc0(τ) · idC (104)

where ǫQ is uniquely determined by the invariant D-brane. At first sight
this yields a selection rule, because the D-brane is contained in the category
parametrized by ǫ if and only if ǫQ = ǫ. Now let us take into account the
external spacetime dimensions. We define an external Chan-Paton space
V ≃ CD where D denotes the number of external spacetime dimensions.
This is typically set to four in order to build realistic string backgrounds.
Furthermore we choose a map UQ,ext : V ∗ → V with UQ,ext(U

−1
Q,ext)

T ∈ {±1}
and define the invariant D-brane in the full theory by

(Ĉ, ρ̂, Q̂, γ̂, ÛQ(τ)) = (V ⊗ C, 1⊗ ρ, 1⊗Q, 1⊗ γ, UQ,ext ⊗ UQ(τ)) (105)

The involutivity condition (103) in the full theory reads

Û(τ)(Û(τ)−1)T ι̂γ̂(τ 2)−1 !
= ǫc0(τ) · idV⊗C (106)

ι̂ : V ⊗ C → (V ⊗ C)∗∗ is again the canonical isomorphism. The evaluation
of the left hand side of (106) for the D-brane defined in (105) yields

ÛQ(τ)(ÛQ(τ)−1)T ι̂γ̂(τ 2)−1 = UQ,extU
−T
Q,extǫQc0(τ) · idV⊗C

This D-brane is contained in the category selected by ǫ if and only if the
following condition holds:

UQ,extU
−T
Q,ext = ǫQ,ext = ǫQǫ (107)

The sign ǫQ,ext determines the gauge group on the D-brane, which is either
O(N) or SP (N/2) for a stack of N identical D-branes. So we have the
following rule to find the gauge group of an irreducible invariant D-brane:
first choose a category by fixing the sign ǫ, then calculate the sign ǫQ of the
D-brane using (104), finally determine the sign ǫQ,ext with the relation (107).

Now we calculate the sign ǫQ,ext for irreducible parity-invariant tensor
products of tensor product branes and permutation branes. The parity action
on bulk fields has already been described in (88):

τm,σ,c : xi 7→ ωwi(
1
2
+mi+c)xσ(i), c ∈ {0, . . . , H − 1}
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Therefore τ 2 acts on the bulk fields as follows:

τ 2
m,σ,c : xi 7→ ωwi(1+2c)xi, c ∈ {0, . . . , H − 1} (108)

Using (68) and (108) we find that the orbifold representation γ(τ 2) is given
by

γ(τ 2) =

(
ω−M/2

⊗

i∈IT ∪IP

γM,i

)1+2c

, γM,i =

(
ω−eni/2 0

0 ωeni/2

)
(109)

Let (C, ρ,Q, γ, UQ(τ)) be an invariant rank 1 D-brane. We distinguish two
cases:

1. [UQ(τ), ρ] = 0 (bosonic invariance)
In this case we have UQ(τ)(UQ(τ)−1)T ι = diag (1,−1) and ñ = H/2.
We now calculate ǫQ in (104) but we replace γ(τ 2) by γM(τ 2):

UQ(τ)(UQ(τ)−1)T ιγM(τ 2)−1/c0(τ) =

(
ω−H/4 0

0 −ωH/4

)−(1+2c)

= (−i)−(1+2c)

(110)

2. {UQ(τ), ρ} = 0 (fermionic invariance)
The parity action on fermionic invariant rank 1 D-branes is determined
by (93), (95) and (96):

Q =

(
0 J(xi)

E(xi) 0

)
7→ −τ ∗QT =

(
0 βE(xi)

β−1J(xi) 0

)

β =





−ω−( 1
2
+m+c)en (TP brane and σ = id)

−ω−( 1
2
+m1+c)en (perm. brane and σ = id)(∏

j∈I(−ηj)
)−1

(−ω−( 1
2
+m2+c)en) (perm. brane and σ 6= id)

We can simplify β in the third case by using the conditions for fermionic
invariance in table 4. Consider the expression (

∏
j∈I(−ηj)). If the

common exponent h is even, then for each ηj there is a ηh−1−(j+m1−m2)

in the product and we have |I|/2 such pairs. The calculation gives
ηjηh−1−(j+m1−m2) = ωw(m1−m2) and then the product is evaluated to be
(
∏

j∈I(−ηj)) = ω(m1−m2)en/2. If h is odd then the product additionally
contains a ηj with j = h − 1 − (j + m1 −m2). It is calculated to be
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ηj = −ωw(m1−m2)/2. From this it follows that the formulas for even and
odd h are the same. Now we recalculate β and we get

β = ω−( 1
2
+ em+c)en

m̃ =





m (tensor product brane and σ = id)
m1 (permutation brane and σ = id)
(m1 +m2)/2 (permutation brane and σ 6= id)

The UQ(τ)-matrix has the form

UQ(τ) =

(
0 βu10

u10 0

)
, u10 ∈ C

From this we get the following result:

UQ(τ)(UQ(τ)−1)T ιγM(τ 2)−1/c0(τ) =

(
βω−en/2 0

0 β−1ωen/2

)−(1+2c)

= −ω emen

(111)

Now we want to calculate the sign ǫQ,ext of a D-brane (C, ρ,Q, γ, UQ(τ))
built of tensor product branes and permutation branes. From (67) we know
that the UQ-matrix is composed of bosonic and fermionic matrices UQ,B,i
resp. UQ,F,i. In order to calculate ǫQ in (104) we need to multiply the factor
(ω−M/2)−(1+2c) into one of the tensor product components. Let us define
γi(τ

2) = (ω−M/2γM,i)
1+2c. Then we have two possibilities to get a real sign:

UQ,B,i(τ)(UQ,B,i(τ)
−1)T ιγi(τ

2)−1/c0(τ) =

{
−1 if M = H/2
+1 if M = 3H/2

(112)

UQ,F,i(τ)(UQ,F,i(τ)
−1)T ιγi(τ

2)−1/c0(τ) =

{
−ω emen if M = 0
+ω emen if M = H

(113)

From (110) we see that each pair of UQ,B,i produces a minus sign. Therefore
we expect a factor of the form (−1)NB/2 in the final expression. This expres-
sion is not correct because of two reasons: first, in the case that we have
M ∈ {H/2, 3H/2}, one UQ,B,i is used to compensate the M-label factor, as
shown in (112). Second, when we have NBF ≥ 1, then NB is in general not
equal to the number of UQ,B,i components. Let us define the following index
sets:

J1 = {i ∈ IT ∪ IP : Qi is fermionic invariant}

J2 = {i ∈ J1 : Qi is not bosonic invariant}

50



Now we are ready to write down the result for the sign ǫQ,ext

ǫQ,ext = ǫǫM (−1)(NB−a−b)/2
∏

i∈J

(
−ω emieni

)

ǫM =

{
+1 if M ∈ {0, 3H/2}
−1 if M ∈ {H/2, H}

a =

{
0 if M ∈ {0, H}
1 if M ∈ {H/2, 3H/2}

b =





1 if P(τ) = P(τ), NBF = 1, NF even
1 if P(τ) = A P(τ), NBF = 1, NF odd
0 otherwise

J =




J2 if P(τ) = P(τ), NBF = 1, NF odd
J2 if P(τ) = A P(τ), NBF = 1, NF even
J1 otherwise

(114)

We have verified that this expression indeed gives a real sign in all cases.
Note that these results only make sense for irreducible D-branes for which
we have NBF ≤ 1. For five-variable Fermat models with σ = id Orientifolds
and D-branes built of tensor product branes only, we can compare our re-
sults with those presented in [15]. We find that the results agree up to two
incompatibilities:

• There is the same problem as the one discussed in subsection 5.3.3: in
the Landau-Ginzburg language we have a case distinction by the two
functors, while the analog case distinction in the CFT language is based
on the mi-labels.

• In (114) we have a M-label-dependence which is not present in the
CFT-based result. This problem might eventually be related to the
first one.

5.5 Ramond-Ramond-charges of Orientifolds

Like D-branes, Orientifolds are charged under the Ramond-Ramond ground
states [2]. The formula to calculate the RR-charges of B-type Orientifolds
was developed in [11]:

ch(P(τ))(|φ〉l) =
∑

τ,τ2=gl

χ(gl)c(τ)−1
( ∏

i,τ2
i 6=1

(1 + τi)
)
ResWl

(φ · Cl) (115)

|φ〉l, φ and Wl have the same meaning as in the D-brane charge formula
(58). τi denotes the eigenvalues of the parity matrix acting on the five chiral
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fields. Cl is a Crosscap operator, whose calculation will be explained below.
In the following we use the term ’residue factor’ for the topological correlator
ResWl

(φ · Cl).
According to the rules (31) for determining the B-type RR ground states,

there are two cases we need to distinguish. In the first case all chiral fields
are twisted in the l-th sector and the residue factor is trivial:

|Ilt = 5| ⇒ ResWl
(φ · Cl) = 1 (116)

In the second case we have two untwisted fields and the B-type RR ground
states have the form |φ〉l = xtaa x

tb
b |0〉

l
(R,R). The residue factor then contributes

nontrivially to the RR-charge. Its calculation proceeds in several steps, as
explained in [11]. First, the Crosscap operator vanishes if the trace of the
parity matrix restricted to the untwisted fields is nontrivial:

TrWl
τ 6= 0 ⇒ Cl = 0 (117)

In the case TrWl
τ = 0, let x‖ and x⊥ be the invariant resp. anti-invariant

eigenvectors of the parity, in the subspace spanned by the untwisted fields:
τ x‖ = x‖, τ x⊥ = −x⊥. Then we define a matrix factorization of the super-
potential Wl as follows:

QP
l (x) =

(
0 x⊥

R(x⊥, x‖) 0

)
, (QP

l )2(x) = Wl(x) · 1 (118)

The Crosscap operator is now determined by

Cl =
1

2
Str
(
∂QP

l

)∧2
(119)

Like in the case of the D-brane charge formula, this expression should be
understood as the coefficient of the differential form dxa ∧ dxb. Note that
(119) differs from the corresponding formula in [11] by a sign. One way to
check this sign is to use the index theorem presented in [11], which contains
the Crosscap operator and which allows to compute the parity twisted index
in the open string sector. This result can then be compared to a direct
computation of the index, which does not rely on the Crosscap operator. We
have done such calculations for several examples and have found agreement
when using (119).

In the following we evaluate the charge formula (115) generically for all
B-type orientifolds in five-variable Fermat-models. First, the sum in the
charge formula goes over all parities squaring to some orbifold group element.
Notably the models with even and odd degrees behave much differently in
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H l Parities

odd odd τ = τ̃ωwi(l−1)/2

odd even τ = −τ̃ωwi(l−1)/2

even odd τ1 = τ̃ωwi(l−1)/2, τ2 = τ̃ωwi(l−1+H)/2

even even -

Table 5: Parities squaring to an orbifold group element

this matter. Table 5 displays all possibilities, see (88) explaining the notation
used in the table. As a consequence we get

H even, l even ⇒ ch(P(τ))(|φ〉l) = 0 (120)

The τ̃ -part of the parity matrix in the original coordinates is block-diagonal
with 1 × 1-blocks for each unpermuted field and with 2 × 2-blocks for each
pair of transposed fields. In the latter case, the diagonalization leads to
τ̃1,2 = diag (ωwi/2,−ωwi/2), which shows that the associated mi-labels for
transposed fields may only show up in the residue factor. Furthermore we
note that in models with odd H , the mi-labels for unpermuted fields must
vanish in order to fulfill the constraint in (88).

Using (99) we evaluate the prefactor in the charge formula:

χ(gl)c(τ)−1 = ǫχ(gl)χ(gl)
1
2 = ǫω

−3Mχl

2

ǫ is the sign which chooses one of the two categories of invariant D-branes.
The Mχ label has been introduced in subsection 5.2.2.

Let us calculate the residue factor. Due to (116) we can focus on the
case |Il,t| = 3. First we need to check, how the parities in table 5 act on the
untwisted fields. A short calculation then shows that all four parities behave
in the exactly same way:

τ : (xa, xb)→ (−ωwamaxσ(a),−ω
wbmbxσ(b))

Looking at (120), we see that we can restrict ourselves to the cases, where
either H or l is odd, but then ha = 2/qa is also odd. To see this in the case
l odd, note that lqa/2 ∈ Z because xa is untwisted in the l-th sector. From
this it follows that for unpermuted fields the constraint on the mi-labels in
(88) can only be satisfied with ma = mb = 0. Therefore we have TrWl

τ = −2
and then (117) implies

|Il,t| = 3 and a = σ(a) ⇒ ResWl
(φ · Cl) = 0 (121)
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Therefore we only need to consider the case where both untwisted fields are
transposed by the parity. Then the relation (89) tells us that the weights
associated to both untwisted fields must be equal. The diagonalization of
the parity matrix now yields the eigenvalues (τ1, τ2) = (1,−1) leading to the
result TrWl

τ = 0. As we have seen, this is a necessary condition for the
residue factor to be nontrivial. Due to the constraint on the mi-labels (88)
we have ωwamb = ω−wama and thus the parity action can be rewritten as

τ : (xa, xb)→ (−ωwamaxb,−ω
−wamaxa)

The superpotential restricted to the untwisted fields is Wl = xha
a + xha

b and
we can assume ha to be odd, as we have explained above. Now we define the
matrix factorization

QP
l (x) =

(
0 ω−wama

2 xa + ω
wama

2 xb

ω
wama

2

(∑ha−1
j=0 (−1)jωwamajxha−1−j

a xjb

)
0

)

The calculation of the Crosscap operator yields

Cl = ha

ha−1∑

j=1

(−1)jωwamajxha−1−j
a xj−1

b (122)

We need to evaluate the correlator ResWl
(xtaa x

tb
b Cl). Using the second con-

straint in (31)

(ta + 1)wa + (tb + 1)wb = H
wa=wb⇒ ta + tb = ha − 2

we get q(xtaa x
tb
b ) = (ha − 2)wa/H . On the other hand we see from (122)

that q(Cl) = (ha − 2)wa/H and therefore q(xtaa x
tb
b Cl) = q(Hl) holds. Here

Hl is the Hessian of the superpotential Wl, see (24) for the precise definition
of the Hessian. A closer look at (122) reveals that Cl contains all possible
monomials with the charge q(Hl). Therefore one of the summands has to
be a multiple of the Hessian and thus contributes to the residue factor. The
calculation yields

ResWl
(xtaa x

tb
b Cl) = (−1)ta+1ωwama(ta+1)ha · ResWl

(xha−2
a xha−2

b )

=
wa
H
ωwa(ha/2+ma)(ta+1)

Now we are ready to write down the final result. We first introduce some
index sets:

Iid = {i ∈ {1, . . . , r} : i = σ(i)}

Iid,E = {i ∈ {1, . . . , r} : i = σ(i) and wi ∈ 2Z}

Iid,O = {i ∈ {1, . . . , r} : i = σ(i) and wi /∈ 2Z}

Iσ = {i ∈ {1, . . . , r} : i < σ(i)}
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The Orientifold charge takes the form

ch(P(τ))(|φ〉l) = ǫω
−3Mχl

2 Rl
P (ta)

∏

i∈Iσ∩Il,t

(1− ωwil)
∏

i∈Iid∩Il,t

(1− ω(
wi+H

2
)l)

if H odd

ch(P(τ))(|φ〉l) = ǫω
−3Mχl

2 Rl
P (ta)

∏

i∈Iσ∩Il,t

(1− ωwil)
∏

i∈Iid,E∩Il,t

(1 + ωwi(mi+
l
2
))

×
( ∏

i∈Iid,O∩Il,t

(1 + ωwi(mi+
l
2
)) +

∏

i∈Iid,O∩Il,t

(1− ωwi(mi+
l
2
))
)

if H even and l odd

ch(P(τ))(|φ〉l) = 0 if H even and l even

Rl
P (ta) =





1 if |Il,t| = 5
0 if |Il,t| = 3 and a, b ∈ Iid
wa

H
ωwa(ha/2+ma)(ta+1) if |Il,t| = 3 and a, b ∈ Ĩσ

|φ〉l =

{
|0〉l(R,R) if |Il,t| = 5
xtaa x

tb
b |0〉

l
(R,R) if |Il,t| = 3

(123)

Ĩσ contains the indices which belong to chiral fields exchanged by the par-
ity. When comparing these results with the D-brane charge formula (60)
we notice some similarities. First the Rl-factor looks similar in both cases,
suggesting that there is some connection between the mi-labels in permuta-
tion orientifolds and the η-values in permutation branes. On the other hand
we see that the charge formulas look quite differently in the models with
even H . Indeed we will see in subsection 6.2 that the only simple solutions
of the tadpole constraint will be found in the models with odd H .

In some special cases we have compared the Orientifold charges with those
calculated in [15]. We have found agreement for Mχ = 0, mi = 0 ∀i. In all
other cases the results do not match. This problem is most likely related
to the issue raised in section 5.3.3, where we have noted that there exist
some incompatibilities in conjunction with the mi-labels. On the other hand,
Mirror symmetry connects the quantum symmetry of a theory (parametrized
by the Mχ-label) with a global symmetry of the mirror theory (parametrized
by the associated mi-labels) [15]. Thus it should not be surprising to see that
we also have incompatibilities for Mχ 6= 0. We suggest to restrict the usage
of the charge formula to the case Mχ = 0, mi = 0 ∀i, until these issues are
resolved.
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6 Landau-Ginzburg String Backgrounds

6.1 Spacetime-supersymmetry

To construct realistic string backgrounds we need spacetime-supersymmetry.
As shown in (9), the integrality of the left and right U(1)-charges in the NSNS
sector is a necessary condition for spacetime-supersymmetry being present
in the bulk theory. A similar argument applies to the boundary sector of the
theory, namely the R-charges of the open strings need to be integral

q(φ) ∈ Z (spacetime-supersymmetry condition on the boundary) (124)

We want to study the consequences of (124). The orbifold action on open
strings was shown in (56) and we need to remember that this formula is only
valid if both D-branes have equal grading. Nevertheless it is straightforward
to write down the orbifold action in the case that the grading of both D-
branes differ:

φ 7→ ω
H
2

(q(φ)−deg(φ))+ 1
2
(M−cM)φ if ρ̂ = ρ (125)

φ 7→ ω
H
2

(q(φ)−deg(φ)+1)+ 1
2
(M−cM)φ if ρ̂ = −ρ (126)

To see (126) recall that flipping the grading on one D-brane has the single
effect that bosons become fermions and vice versa. Now we apply the orbifold
invariance condition φ 7→ φ to the situation of a D-brane and its image under
some parity and find:

q(φ) ∈ Z ⇒ M − M̂ + αH ∈ HZ, α ∈ {0, 1}

Here the two values of α parametrize the choice of parity: P(τ) = P(τ) resp.
P(τ) = A P(τ). This is only a relative statement, the exact assignment
between the α-values and the parities is not determined. From (100) we have

M̂ = 2Mχ +NH −M and therefore we get

q(φ) ∈ Z ⇒ M ∈
H

2
Z +Mχ + α

H

2
(127)

Thus we have translated the integrality condition into a condition on the
M-labels. It states that there exist at most four different M-labels which
lead to a spacetime-supersymmetric background. This is consistent with
the results derived in [15]. On the other hand, the CFT-based results show
that given a parity, only one of the four M-labels does in fact lead to a
spacetime-supersymmetric theory. Unfortunately we have not found a way
to derive appropriate selection rules purely in the Landau-Ginzburg language.
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Nevertheless we can make some progress by combining the knowledge of both
the Landau-Ginzburg and the CFT description. Let us have a look at the
spacetime-supersymmetry condition derived in the CFT-language in [15]:

(R,R)〈0|Ba〉(R,R)

(NS,NS)〈0|Ba〉(NS,NS)

=
(R,R)〈0|C 〉(R,R)

(NS,NS)〈0|C 〉(NS,NS)

(128)

The left hand side can be calculated in the Landau-Ginzburg approach:

(R,R)〈0|B
a〉(R,R)

(NS,NS)〈0|Ba〉(NS,NS)

=
ch(Q, γ)(|0〉1

(R,R)
)

|ch(Q, γ)(|0〉1
(R,R)

)|

Let us evaluate this expression using the charge formula (60). We can take
advantage from the fact that |I1,t| = 5 in all five-variable Fermat-models. By
taking into account (54) we get the following result:

ch(Q, γ)(|0〉1(R,R))

|ch(Q, γ)(|0〉1
(R,R)

)|
= exp

(
−i
πM

H
− iN

π

2

)

In the case of D-branes built of tensor product branes only, this result agrees
with the one derived in [15] up to a sign in the exponent. For the right hand
side of (128), the translation to the Landau-Ginzburg language is less clear
because of the matching problems with the Orientifold charges, as discussed
in section 5.5. Nevertheless we try the following ansatz:

(R,R)〈0|C 〉(R,R)

(NS,NS)〈0|C 〉(NS,NS)

= β
ch(P(τ))(|0〉1

(R,R)
)

|ch(P(τ))(|0〉1(R,R))|

where β is some phase factor. In the following we restrict ourselves to the
case Mχ = 0, mi = 0 ∀i. Then the calculation of the right hand side using
(123) yields

ch(P(τ))(|0〉1
(R,R)

)

|ch(P(τ))(|0〉1(R,R))|
= exp

(
i
π(2− ǫ)

2
− iNσ

π

2

)

Nσ is the number of field pairs exchanged by the parity. We fix the factor
β by the following idea: consider the situation with one Orientifold and one
invariant D-brane which cancel the tadpoles with ch(Q, γ) = −ch(P(τ)).
Then we can assume the background to be spacetime-supersymmetric. In
this case β has to be set to −1. The supersymmetry condition (128) now
reads

−
πM

H
−N

π

2
= −

π(2− ǫ)

2
−Nσ

π

2
mod 2π

57



This result is not compatible with (127), which states that the exchange of
the parities P(τ) and A P(τ) should be accompanied by shifting the M-
label by H/2 in order to keep spacetime-supersymmetry. We can improve
the situation by assigning to both parities two β-values, which differ by a
phase of π/2. Thus we propose that the spacetime-supersymmetry condition
should have the following form:

−
πM

H
−N

π

2
=
π(2− ǫ± 1)

2
−Nσ

π

2
mod 2π if P(τ) = P(τ) (129)

−
πM

H
−N

π

2
= −

π(2− ǫ)

2
−Nσ

π

2
mod 2π if P(τ) = A P(τ) (130)

Mχ = 0, mi = 0 ∀i

For N = 5 and Nσ = 0 we can compare (130) with the results presented in
[15] and find agreement. The sign ambiguity in (129) can not be fixed at the
moment. How should the additional phase be interpreted? The possibility
of absorbing the phase into the Orientifold charge is ruled out, because the
reality of the parity twisted index would be spoiled. This suggests that we
have the following relation in the case P(τ) = P(τ):

(NS,NS)〈0|C 〉(NS,NS) = ±i|ch(P(τ))(|0〉1(R,R))|

From a physical point of view, the left hand side of this equation is interpreted
as a tension of the Orientifold plane which should be real. On the other
hand, the right hand side is purely imaginary. Notably, similar effects have
been observed in [15] where additional phase factors had to be introduced
to make the Orientifold tension real. We suggest to prefer using the parity
P(τ) = A P(τ) for constructing string backgrounds, until the validity of the
additional phase has been verified.

6.2 Simple tadpolefree backgrounds

In the following we restrict ourselves to five-variable Fermat-models. We
are looking for configurations with Orientifolds and D-branes that solve the
tadpole constraint:

1

D

∑

i

ch(Qi, γi) + ch(P(τ)) = 0 (131)

D denotes the number of external dimensions and the charges are meant to
be calculated in the internal theory. The factor of 1/D takes the external
dimensions into account [15]. First we want to concentrate on backgrounds
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Model 4 D-branes, p = 0 Orientifold, P(τ) = A P(τ),
ǫ = −1, Mχ = 0, mi = 0 ∀i

P(1,1,1,1,1)[5] (3, 3, 3, 3, 3) σ = id
(3, {η2}, {η2}) σ = (2↔ 3, 4↔ 5)

P(1,1,1,3,3)[9] (5, 5, 5, 6, 6) σ = id
(5, {η4}, {η1}) σ = (2↔ 3, 4↔ 5)

P(1,1,3,5,5)[15] (8, 8, 9, 10, 10) σ = id
({η7}, 9, {η1}) σ = (1↔ 2, 4↔ 5)

P(1,3,3,3,5)[15] (8, 9, 9, 9, 10) σ = id
P(1,3,3,7,7)[21] (11, 12, 12, 14, 14) σ = id

(11, {η3}, {η1}) σ = (2↔ 3, 4↔ 5)
P(1,5,9,15,15)[45] (23, 25, 27, 30, 30) σ = id

Table 6: Simple solutions of the tadpole constraint, including non-invariant
configurations

consisting of an Orientifold and one stack of identical irreducible invariant
D-branes. We call these configurations ’simple backgrounds’. In models with
H even the charge formulas (60) and (123) differ too much to allow sim-
ple solutions. Therefore we can restrict ourselves to the six models with
H odd: P(1,1,1,1,1)[5], P(1,1,1,3,3)[9], P(1,1,3,5,5)[15], P(1,3,3,3,5)[15], P(1,3,3,7,7)[21]
and P(1,5,9,15,15)[45].

From (101) we see that in these models there are no irreducible D-branes
invariant under the parity P(τ) = P(τ). Additionally D-branes in these
models can not contain components having middle degree ñi = H/2; thus
none of the components can be bosonic invariant according to table 4. Equiv-
alently we have NBF = NB = 0. Then using (101) we deduce that irreducible
invariant D-branes do only exist if the number of components N is odd. In
five-variable Fermat-models there are only two possibilities: either we have
zero or two permutation branes.

By having another look at the charge formulas we notice that each factor
in the D-brane charge formula associated to a permutation brane should
be matched by a factor in the Orientifold charge formula associated to the
exchange of the two field variables. Therefore solutions with two permutation
branes can only be found in models where there exist two pairs of equal
weights. These are: P(1,1,1,1,1)[5], P(1,1,1,3,3)[9], P(1,1,3,5,5)[15] and P(1,3,3,7,7)[21].
Table 6 shows all simple tadpolefree configurations up to a permutation of
variables. For the D-branes we use the notation (d1, . . . , dN) with di = ni
for tensor product branes and di = {η1, η2, . . .}, ηj ∈ Ii for permutation
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Model 4 D-branes Orientifold, P(τ) = A P(τ),
ǫ = −1, Mχ = 0, mi = 0 ∀i

P(1,1,1,1,1)[5] M = 5, (3, 3, 3, 3, 3) σ = id
M = 5, (3, {η2}, {η2}) σ = (2↔ 3, 4↔ 5)

P(1,1,1,3,3)[9] M = 9, (5, {η4}, {η1}) σ = (2↔ 3, 4↔ 5)
P(1,3,3,7,7)[21] M = 21, (11, {η3}, {η1}) σ = (2↔ 3, 4↔ 5)

Table 7: Simple tadpolefree and spacetime-supersymmetric backgrounds

branes. In some of these configurations we have nontrivial residue factors in
the charges: it is rewarding to see them to be matched exactly.

Using (54) we calculate the M-value for all configurations and check with
(101) whether each configuration is parity-invariant. It turns out that this
is only the case for four backgrounds, which are shown in table 7. Addi-
tionally we verify using (130) that these four configurations are spacetime-
supersymmetric. Note that we always have four D-branes in each configura-
tion due to the four external dimensions.

6.3 Constructing general backgrounds

Here we give detailed instructions how to construct general Fermat-type back-
grounds which are tadpolefree and spacetime-supersymmetric. We suggest
the following strategy:

1. Choose a model P(w1,w2,w3,w4,w5)[H ]

2. Choose a parity functor: P(τ) = P(τ) or P(τ) = A P(τ). Because of
the open issues in conjunction with P(τ) = P(τ), which were discussed
in subsection 6.1, it is advisable to work with P(τ) = A P(τ).

3. Choose values for ǫ, Mχ and mi to fix the parity. Because of the
problems discussed in the subsections 5.3.3 and 5.5 we suggest to set
Mχ = 0, mi = 0 ∀i. Furthermore choose a permutation σ for the
parity.

4. By using (129) resp. (130) write down all combinations of M and N
which lead to a supersymmetric configuration with the Orientifold.

5. Define a set of D-branes with the M-values determined above. Use (101)
to mark the irreducible parity-invariant D-branes in the set. Make sure
that the set includes the parity images of all non-invariant D-branes.
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Define a new set with all irreducible parity-invariant D-branes and the
direct sums of non-invariant D-branes and their parity images. This
new set contains the building blocks of the string background to be
constructed.

6. Use the rules (31) to write down all B-type Ramond-Ramond ground
states |φ〉l

(R,R)
xtaa x

tb
b |0〉

l
(R,R)

.

7. Use (60) and (123) to calculate the charges of the Orientifold and the
D-branes and write them as expansion in ωjl, j ∈ {0, . . . , H − 1}:

|Il,t = 5| : ch(P(τ))(|φ〉l(R,R)) =

H−1∑

j=0

pjω
jl

ch(Qi, γi)(|φ〉
l
(R,R)) =

H−1∑

j=0

ajiω
jl

|Il,t = 3| : ch(P(τ))(|φ〉l
(R,R)

) =
H−1∑

j=0

p̃j(ta)ω
jl

ch(Qi, γi)(|φ〉
l
(R,R)

) =
H−1∑

j=0

ãji(ta)ω
jl

8. Write down the following matrices and vectors:

A = (aji) =




a11 a12 · · ·
a21 a22 · · ·
...

...
. . .


 , P =




p1

p2
...




Ã(ta) = (ãji(ta)) =




ã11(ta) ã12(ta) · · ·
ã21(ta) ã22(ta) · · ·

...
...

. . .


 , P̃ =




p̃1(ta)
p̃2(ta)

...




9. Solve the linear system of equations

1

D
AB = −P,

1

D
Ã(ta)B = −P̃ (ta), B = (b1, b2, . . .)

T , bi ∈ N0 ∀i

The numbers bi to be calculated count the number of D-branesQi in the
background. If there are no solutions, then enlarge the set of D-branes,
if possible, and retry. Also have a look at [15] for some useful tools
which help to solve these equations.
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7 Massive Landau-Ginzburg Orbifolds

In section 4.9 we have made a comparison between the LG- and the CFT-
description of D-branes. We have noted that D-branes described in the CFT-
language sometimes have an additional ψ-label, which does not seem to be
present in the LG formalism. In the following we shed some light on this
issue.

Consider a Landau-Ginzburg orbifold with superpotential W (xi). This
theory is equivalent to a massive Landau-Ginzburg orbifold with superpo-
tential W̃ = W (xi) +

∑
i(−z

2
i1 − z

2
i2) [33]. In these models there exist some

special types of reducible D-branes. To study these, let us first work with
the superpotential W = xh − z2 and let us assume that h is even. Consider
the following D-brane:

Q =

(
0 xh/2

xh/2 0

)
⊗

(
1 0
0 1

)
+

(
1 0
0 −1

)
⊗

(
0 z
−z 0

)

ρ =

(
1 0
0 −1

)
⊗

(
1 0
0 −1

) (132)

According to (82) and (84) this D-brane is reducible and equivalent to

Q̂ = UQU−1 =

(
0 xh/2 + z

xh/2 − z 0

)
⊕

(
0 xh/2 − z

xh/2 + z 0

)

ρ̂ =

(
1 0
0 −1

)
⊕

(
1 0
0 −1

) (133)

The transformation matrices U and U−1 are computed using (83):

U =




1 0 0 1
0 1 1 0
0 1 −1 0
−1 0 0 1


 , U−1 =




1 0 0 −1
0 1 1 0
0 1 −1 0
1 0 0 1




We want to calculate the orbifold representation matrix associated to the
matrix factorization (133). To do this we need to find out, how the orbifold
group should act on the field z. In the models with H odd it is not possible to
extend the ZH orbifold group to the additional field, because its exponent is
not a divisor of H . Therefore it seems to be natural to let the orbifold group
act trivially on z. Then the orbifold representation matrix has the following
form:

γ = ω−M/2

(
−i 0
0 i

)
⊗

(
1 0
0 1

)
= ω−M/2




−i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 i



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If we now transform this matrix using U and U−1 we get

γ = ω−M/2




0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0




This matrix maps the irreducible components of Q̂ to itself, but with the op-
posite grading. These component D-branes are therefore not invariant under
the orbifold group. The situation changes, if we consider the more general
superpotential W̃ . Now we can have tensor products of NS D-branes of type
(132). If NS is even, then the D-brane is invariant under the orbifold group.
The irreducible component D-branes can be identified with the short orbit
branes B̂ki/2,Mi,Si

described in [15]. The ψ-label is used in the CFT language
whenever a D-brane splits up into two inequivalent D-branes containing short
orbit branes. In principle we could use these D-branes to construct string
backgrounds, but there is a problem which we already mentioned in section
4.6: the orbifold group treats the two fields associated to such a D-brane
differently and it is not clear, whether the charge formula applies for this
situation.

8 Summary

In this work we have shown that the Landau-Ginzburg formalism is well
suitable to construct string backgrounds. D-branes and Orientifolds both fit
nicely into mathematical structures, the former as objects in a triangulated
category and the latter as functors in this category. The charges of both ob-
jects can be computed with little effort using the formulas presented in this
work. The parity invariance of D-branes and the spacetime-supersymmetry
of the whole configuration can be checked quickly with the relations devel-
oped in this thesis. We have presented a step-by-step guide explaining the
construction of string backgrounds in the Landau-Ginzburg language. These
procedures are suitable to be implemented in computer programs in order to
find interesting configurations.

The comparison of the Landau-Ginzburg formalism with the conformal
field theory description has revealed some incompatibilities, which currently
imposes restrictions on the Orientifolds and D-branes to be used for con-
structing string backgrounds. The resolution of these problems will improve
the applicability of the Landau-Ginzburg approach even more.
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