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Abstract

In this thesis the decay of a fourth generation U -quark was studied for a gauge model
with a SU(4) × SU(3) × SU(2) × U(1) symmetry and a fourth generation of heavy vector-
like fermions. Under the assumption of small mass mixing and increasing masses for later
generations, the leading order contribution of the 2-body and 3-body decay widths were
computed in terms of the fundamental parameters. Finally, the two decay modes were
compared for different mass values of the Leptoquark and the fourth generation U -quark.
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Part I

Introduction

1 Motivation

Pursuing the question of what this universe is made of and which laws it follows, there have
been a large amount of discoveries made in particle physics in the last century. Most of these
discoveries are embedded in the Standard Model (SM) of particle physics [1]. While the Standard
Model is a full and conclusive theory itself, it fails to describe many physical phenomena and
thus cannot be viewed as the fundamental theory of the interactions in the universe [2]. Besides
the unification with general relativity and gravity, there are also phenomenological problems like
the existence of neutrino masses, that cause neutrino oscillations [3]. Additionally, the fact that
only a small amount of the energy spectrum has been measured in experiments leaves room for
additional heavy particles besides the Standard Model particles. To study the emergence of new
particles or interactions at high energies, many precision measurements have been performed
using the high-energy particles from the Large Hadron Collider (LHC) [4]. One particularly
interesting area for such precision tests is flavor physics. For all matter particles in the SM there
are three identical copies, that only differ from each other in mass. For the leptonic sector there
are no flavor changing vertices in the SM and the couplings to the gauge bosons are the same
for all generations. This leads to a large sensitivity to new physics in lepton flavor non-universal
processes. In the last years, several experiments have substantiated the inaccuracies of Standard
Model predictions in the decay of B mesons [5]. The BABAR and LHCb collaborations are two
of the most prominent examples for such experiments [6] [7]. While more data is taken in
order to get statistically more significant results, the current knowledge about the semileptonic
B decay is enough to spark a new interest in theories which have an additional mechanism of
flavor-universality breaking. One specific group of models addressing this issue are the 4321
models, which have a SU(4) × SU(3) × SU(2) × U(1) symmetry. These models originated
from the Pati-Salam (PS) model, which tried to unify quark colors and leptons into a fourfold
multiplet on which the SU(4) symmetry can act. The new results in B physics have excluded
the Pati-Salam Leptoquark, as it is constrained to be heavy by flavor measurements(> 250TeV )
[8]. However, a Leptoquark would need to have a mass of a few TeV and a O(1) coupling to the
third generation fermions to explain the B anomalies, which excludes the original PS model [9].
In this thesis the decay of a fourth generation quark is studied for a specific 4321 model with a
heavy vector-like fourth generation.
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2 Theory

While the SU(3)×SU(2)×U(1) part is similar to the Standard Model and hence does not need
an additional introduction, it is interesting to take a look at the SU(4) symmetry of the model.

2.1 SU(4) and Leptoquarks

The SU(4) symmetry connects quark colors and leptons into a fourfold multiplet and interprets
leptons as being the fourth color.

ψL =


qrL
qgL
qbL
lL

 ψR =


qrR
qgR
qbR
lR

 (1)

The gauge symmetry then has the following generators T
SU(4)
a = λa√

6
with a = 1, 2, ..., 15 [10].

λ1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 λ2 =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 λ3 =


1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0



λ4 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 λ5 =


0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

 λ6 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0



λ7 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 λ8 =
1√
3


1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

 λ9 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0



λ10 =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

 λ11 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 λ12 =


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0



λ13 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 λ14 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 λ15 =
1√
6


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3



(2)

Note that the first eight matrices λ1,2,...,8 form the subgroup SU(3) of SU(4) and can therefore be
mixed with the pure SU(3) symmetry. The generators T9,...,14 facilitate an interaction between
quarks and leptons, which can be described in the following way.

L ⊃ −ig4
i=14∑
i=9

ψ̄Ti /H
i
ψ = − ig4√

3

(
q̄r /U

1+
l + q̄g /U

2+
l + q̄b /U

3+
l + l̄ /U

1−
qr + l̄ /U

2−
qg + l̄ /U

3−
qb
)

U1,2,3+
µ =

1√
2
(H9,11,13

µ − iH10,12,14
µ )

U1,2,3−
µ =

1√
2
(H9,11,13

µ + iH10,12,14
µ )

(3)

2
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These interaction vertices are particularly interesting, as they give rise to an additional flavor
changing mechanism due to the misalignment of gauge and mass eigenstates.
Since the SU(4) symmetry of the 4321 models unifies quarks and leptons, the explanation of
the different masses forces the existence of a new symmetry breaking mechanism. In this thesis
the additional symmetry breaking is assumed to be at a larger scale than the relevant scale for
fourth generation fermions decaying. Therefore, only true mass terms and mass terms stemming
from the Higgs mechanism are regarded in this thesis.

2.2 The model

This chapter introduces a specific case of a 4321 model including a fourth generation of fermions,
which is studied in this thesis. For further insights into the model one can see [9]. As expected
for a 4321 theory, there are 4 different kinds of gauge fields: Ha

µ, C
b
µ, W

c
µ and B

′
µ with indices

a = 1, 2..., 15, b = 1, 2..., 8 and c = 1, 2, 3. While the SU(2) fields W c
µ are already the same as

in the SM, the SU(4) and SU(3) mix, such that the SM gluons Gaµ and hypercharge bosons Bµ
are given by:

Gbµ = c3 · Cbµ + s3 ·Hb
µ

Bµ = s1 ·H15
µ + c1 ·B

′
µ

(4)

With b still being an index between 1 and 8 and s1/c1 and s3/c3 being the sine/cosine of the
mixing angles θ1 and θ3. Together with the Leptoquarks from equation 3, these are only 15 of
the 24 gauge fields that are associated with SU(4), SU(3) and U(1). The remaining gauge fields
are given by:

Gb
′
µ = −s3 · Cbµ + c3 ·Hb

µ

Z
′
µ = −s1 ·B

′
µ + c1 ·H15

µ

(5)

Again, the index b goes from 1 to 8. These gauge fields get masses through the spontaneous
symmetry breaking SU(4)× SU(3)× U(1) → SU(3)C × U(1)Y .
Finally, it remains to introduce the fermion field content of the theory. As in the SM, there
are three generations of quarks and leptons, but in this case the generations do not have the
same gauge transformation properties. The first two generations have the same hypercharges
and properties as in the SM, e.g. they are a singlet under SU(4) transformations. The third
generation quarks transform as a singlet under SU(3) and in the fundamental represantion of
SU(4), the same behavior as the third generation leptons. Additionally, there is a right-handed
neutrino that is introduced for the third generation. For the fourth generation, vector like
fermions are introduced. In this thesis the model 1 of [9] is used.
The fields with index i=1,2 correspond to the first two generations. It is also noteworthy that
all these fields are denoted in their gauge eigenstates. The third generation is given by the
ψ fields: ψL = (q3L, l

3
L)
T , ψup−typeR = (u3R, ν

3
R)

T and ψdown−typeR = (d3R, e
3
R)

T . Lastly, there
is also the new heavy generation represented by large letters: QL/R = (UR/L, DR/L)

T and

LL/R = (NR/L, ER/L)
T .

3
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Field SU(4) SU(3) SU(2) U(1)
qiL 1 3 2 1/6
uiR 1 3 1 2/3
diR 1 3 1 −1/3
liL 1 1 2 −1/2
eiR 1 1 1 −1
ψL 4 1 2 0

ψup−typeR 4 1 1 1/2

ψdown−typeR 4 1 1 −1/2
QL 4 1 2 0
QR 1 3 2 1/6
LL 4 1 2 0
LR 1 1 2 −1/2

Table 1: Summary of the fermion fields and their representations in the gauge symmetries.

3 Procedure

In this thesis the decay of the fourth generation U -quark into SM particles is studied. This decay
can happen through two different interaction types. First, there is the two-body decay into a
W -boson and a bottom quark. Additionally, the Leptoquark can facilitate the decay U → ντb.

U(p1)

W+(p3)

b(p2)

U(p1)

ν(p2)

τ(p3)

b(p4)

LQ+

Figure 1: Feynman diagrams of the U -quark decay modes studied in this thesis.

For the U -quark decay one can define a ratio R between the two decay widths.

R =
Γ(U →W+b)

Γ(U → ντb)
(6)

The goal of this thesis is to study this ratio and express it in terms of the new mass parameters,
which involve the fourth generation quarks.

4
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Part II

Symmetry breaking and mass mixing

4 Symmetry breaking

In this section the symmetry breaking of the model is computed with the goal of finding the
mixing angles as a function of the gauge couplings. The starting point for this is the kinetic
part of the Lagrangian with its covariant derivative.

L ⊃
∑

ψ=qiL,u
i
R,d

i
R,l

i
L,e

i
R,ψL,ψ

+
R ,ψ

−
R ,QL,QR,LL,LR

ψ̄ /∂ψ − ig4
∑

ψ=ψL,ψ
+
R ,ψ

−
R ,QL,LL

ψ̄ /H
a
TSU(4)
a ψ

−ig3
∑

ψ=qiL,u
i
R,d

i
R,QR

ψ̄ /C
b
λ̄bψ−ig2

∑
ψ=qiL,l

i
L,ψL,Q,L

ψ̄ /W
cσc

2
ψ−ig1

∑
ψ=qiL,u

i
R,d

i
R,l

i
L,e

i
R,ψ

+
R ,ψ

−
R ,QR,LR

ψ̄ /B
′
Xiψ

(7)

T
SU(4)
a , the Gell-Mann matrices λ̄b and the halved Pauli matrices σc

2 are the generators of SU(4),
SU(3) and SU(2) respectively. The charges Xi for U(1) can be distinct for different fields and
are shown in table 1. This can be rewritten in a form such that the gauge fields that represent
intact symmetries after the symmetry breaking are more clearly visible. Thus, the angles θ1 and
θ3 can be derived. In equation 4, a general mixing of the SU(4) and SU(3) fields has already
been assumed. The equations 4 and 5 can be transformed such that the initial gauge fields Cbµ
and Hb

µ are given as functions of the gauge fields Gbµ and Gb
′
µ . Plugging these relations into

equation 7 and leaving out insignificant parts, yields:

L ⊃ −i
(
g4

∑
ψ=ψL,ψ

+
R ,ψ

−
R ,QL,LL

ψ̄T b(c3 /G
b′
+ s3 /G

b
)ψ + g4

∑
ψ=ψL,ψ

+
R ,ψ

−
R ,QL,LL

ψ̄T 15(c1 /Z
′
+ s1 /B)ψ

+ g3
∑

ψ=qiL,u
i
R,d

i
R,QR

ψ̄T b(−s3 /G
b′
+ c3 /G

b
)ψ + g1

∑
ψ=qiL,u

i
R,d

i
R,l

i
L,e

i
R,ψ

+
R ,ψ

−
R ,QR,LR

ψ̄Xi(c1 /B − s1 /Z
′
)ψ)
)
(8)

Here Aµ represents the photon field.
To have the same behaviour for the strong gauge bosonGbµ as in the SM, the first three generation
must have the same coupling strength. But one has to be careful, since the SU(4) generators
have an additional factor 1√

6
in comparison to the Gell-Mann matrices.

gSMS =
g4s3√

6
= g3c3 ⇐⇒ tan(θ3) =

g3
√
6

g4
(9)

Before the analysis is continued, it is useful to introduce a notation that is better suited to
discuss flavor. Since the goal of this thesis is to discuss the decaying behavior of the fourth
generation, the first generation is neglected in this thesis from this point on. Aware that particles
with different quantum numbers are mixed into the same vector, the following multiplets are

5
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introduced:

u
′
L =

u2Lu3L
U

′
L

 d
′
L =

d2L
d3L
D

′
L

u
′
R =

(
u3R
U

′
R

)
d
′
R =

(
d3R
D

′
R

)

e
′
L =

e2Le3L
E

′
L

 ν
′
L =

 ν2L
ν3L
N

′
L

 e
′
R =

(
e3R
E

′
R

)
ν

′
R =

(
ν3R
N

′
R

)
(10)

The left-handed fields qL and lL are defined as:

q
′
L = (

(
u2L
d2L

)
,

(
u3L
d3L

)
,

(
U

′
L

D
′
L

)
)T l

′
L = (

(
ν2L
e2L

)
,

(
ν3L
e3L

)
,

(
N

′
L

E
′
L

)
)T (11)

The terms involving the SM gauge field Bµ of equation 8 can then be rewritten, while leaving
out the first generation particles as already mentioned.

L ⊃ −i[q̄′Ldiag(
g1
6
c1 /B,

g4√
6
s1 /B,

g4√
6
s1 /B)q

′
L + l̄

′
Ldiag(−

g1
2
c1 /B,−

3g4√
6
s1 /B,−

3g4√
6
s1 /B)l

′
L+

ū
′
Rdiag(

g4√
6
s1 /B +

g1
2
c1 /B,

g1
6
c1 /B)u

′
R + d̄

′
Rdiag(

g4√
6
s1 /B − g1

2
c1 /B,

g1
6
c1 /B)d

′
R+

ē
′
Rdiag(−

3g4√
6
s1 /B − g1

2
c1 /B,−

g1
2
c1 /B)e

′
R + ν̄

′
Rdiag(−

3g4√
6
s1 /B +

g1
2
c1 /B,−

g1
2
c1 /B)ν

′
R] (12)

The mixing angle θ1 can be found by requiring that the couplings of the fermion fields to the
gauge field Bµ are the same as in the SM for the first three generations.

q
′
L :

g
′
SM

6
=
g1
6
c1 =

g4√
6
s1

l
′
L : −

g
′
SM

2
= −g1

2
c1 = −3g4√

6
s1

u
′
R :

2

3
g
′
SM =

2

3
g1c1 =

g4√
6
s1 +

g1
2
c1

d
′
R : −1

3
g
′
SM = −1

3
c1g1 =

g4√
6
s1 −

g1
2
c1

e
′
R : −g′

SM = −g1c1 = −3g4√
6
s1 −

g1
2
c1

(13)

All these equations give the same value for the angle θ1 and for g
′
SM and thus a consistent

symmetry breaking pattern is achieved.

g
′
SM = g1c1 =

√
6g4s1

tan(θ1) =
g1

g4
√
6

(14)

5 Mass mixing

Before the Feynman rules can be calculated, it is important to recollect that up to this point the
formulas were written in the gauge eigenstates of the fields. As already stated, the additional
symmetry breaking mechanism that is used to give leptons distinct masses from the quarks in

6



Mass mixing Nando Zwahlen

SU(4) is neglected, as in this thesis scales below this mechanism are interesting. Therefore, only
Yukawa interactions and real mass terms are looked at.

L ⊃ ū
′
L

λ
u
23

v√
2

0

λu33
v√
2

m
′
q

Λu v√
2

M
′
q

u
′
R + d̄

′
L

λ
d
23

v√
2

0

λd33
v√
2

m
′
q

Λd v√
2

M
′
q

 d
′
R + ē

′
L

λ
e
23

v√
2

0

λe33
v√
2

m
′
l

Λe v√
2

M
′
l

 e
′
R + ν̄

′
L

λ
ν
23

v√
2

0

λν33
v√
2

m
′
l

Λν v√
2

M
′
l

 ν
′
R

(15)
Without knowing their values, a set of fields in the mass eigenstate are defined:

uL =

cLtL
UL

 dL =

 sL
bL
DL

uR =

(
tR
UR

)
dR =

(
bR
DR

)

eL =

µLτL
EL

 νL =

 νµL
ντL
NL

 eR =

(
τR
ER

)
νR =

(
ντR
NR

)
(16)

The mixing matrices Y i from equation 15 are diagonalized using the unitary matrices (W i
L)3x3

and (W i
R)2x2, with the index i = u, d, e, ν corresponding to the particle type.

Y i
diag =W i†

L Y
iW i

R

(Y i†Y i)diag =W i†
R (Y i†Y i)W i

R

(Y iY i†)diag =W i†
L (Y iY i†)W i

L

(17)

5.1 Matrix perturbation theory

To calculate the mixing matrices between the gauge and the mass eigenstates, matrix perturba-
tion theory is used. For this it is assumed that the matrix, that should be diagonalized, only has
small off-diagonal elements and can be diagonalized to each order by a unitary mixing matrix.

M =Mdiag
0 + ϵMoff−diag

1

W =W0 + ϵW1 + ϵ2W2 +O(ϵ3)
(18)

At O(ϵ0) one gets W0 = I, such that W0 is unitary and keeps M0 diagonal. Up to order O(ϵ) it
gets more interesting:

W †W = I + ϵ(W1 +W †
1 ) = I

⇒W1 = −W †
1

W †MW =M0 + ϵ(M1 +M0W1 +W †
1M0)

⇒M1 = [W1,M0]

(19)

Note that these formulae are for quadratic matrices and that there is no correction to the
diagonal elements of M at this order. Now the mixing matrices W i

R and W i
L can be computed

up to first order using the equations from 17.

Y i†Y i =

(
v2

2 (|λ
i
23|2 + |λi33|2 + |Λi|2) v√

2
(mλi∗33 +MΛi∗)

v√
2
(m∗λi33 +M∗Λi) m2 +M2

)
(20)

To use the matrix perturbation framework, a look at the hierarchy of the scales in our theory
is needed. Assuming a similar hierarchy as in the SM, small mixing and increasingly heavier
generations lead to the hierarchy M >> v,m. By factoring out M2, it is now obvious that

7
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there are O(1) elements in the diagonal and O( vM ) elements in the off-diagonal. Thus, matrix
perturbation theory is applicable and the last equation of 19 can be used to get the mixing
matrix (in this case the equation is multiplied by ϵ).

W i
R =

(
1 WR,i

12

−WR,i∗
12 1

)

WR,i
12 =

v√
2
(mλi∗33 +MΛi∗)

m2 +M2 − v2

2 (|λ
i
23|2 + |λi33|2 + |Λi|2)

(21)

The 3x3 matrix W i
L is computed to be:

Y iY i† =

 v2

2 |λ
i
23|2 v2

2 λ
i
23λ

i∗
33

v2

2 λ
i
23Λ

i∗

v2

2 λ
i∗
23λ

i
33

v2

2 |λ
i
33|2 +m2 v2

2 λ
i
33Λ

i∗ +mM∗

v2

2 λ
i∗
23Λ

i v2

2 λ
i∗
33Λ

i +m∗M v2

2 |Λ
i|2 +M2

 (22)

Due to the same reasons as for W i
R matrix perturbation theory can be applied.

W i
L =

 1 WL,i
12 WL,i

13

−WL,i∗
12 1 WL,i

23

−WL,i∗
13 −WL,i∗

23 1


WL,i

12 =
v2

2 λ
i
23λ

i∗
33

m2 + v2

2 (|λ
i
33|2 − |λi23|2)

WL,i
13 =

v2

2 λ
i
23Λ

i∗

M2 + v2

2 (|Λi|2 − |λi23|2)

WL,i
23 =

v2

2 λ
i
33Λ

i∗ +mM∗

M2 −m2 + v2

2 (|Λi|2 − |λi33|2)

(23)

5.2 Parameter reduction

The physical effects of the mass mixing can be seen in vertices where different kind of fermions
interact. In the SM such flavor changing effects only arise due to the charged current weak
interaction with the W -boson and are described using the CKM-matrix.

L ⊃ −i g2√
2
(ūL /W

+
W u†
L W d

LdL + ūR /W
+
W u†
R diag(0, 1)W d

RdR

+ d̄L /W
−
W d†
L W

u
LuL + d̄R /W

−
W d†
R diag(0, 1)W

u
RuR) (24)

The CKM-matrix in the SM describes the flavour changing properties of the weak vertex.

L ⊃ ūSML /W
+
VCKMd

SM
L + d̄SML /W

−
V †
CKMu

SM
L (25)

Where uSML and dSML are vectors containing the three up-/down-type quark generations of the
SM respectively. The elements of this matrix have been measured and can therefore be used
to reduce the numbers of free parameters in this model [11]. The bottom right 2× 2-matrix of

VCKM should then be equal to the upper-left 2× 2-matrix of V4321 =W u†
L W d

L.

V4321 =1 +WL,u
12 WL,d∗

12 +WL,u
13 WL,d∗

13 WL,d
12 −WL,u

12 +WL,u
13 WL,d∗

23 WL,d
13 −WL,u

13 −WL,u
12 WL,d

23

WL,u∗
12 −WL,d∗

12 +WL,u
23 WL,d∗

13 1 +WL,u∗
12 WL,d

12 +WL,u
23 WL,d∗

23 WL,d
23 −WL,u

23 +WL,u∗
12 WL,d

13

WL,u∗
13 −WL,d∗

13 −WL,u∗
23 WL,d∗

12 WL,u∗
23 −WL,d∗

23 +WL,u∗
13 WL,d

12 1 +WL,u∗
13 WL,d

13 +WL,u∗
23 WL,d

23


(26)

8
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The upper-left 2× 2 part of V4321 can be simplified using the Yukawa hierarchy λi23 << λi33,Λ
i.

These hierarchy assumptions are particularly well justified for the quark sector with its small
mass mixing and ascending masses for later generations in the SM.

WL,i
12 : O(

λi23
λi33

)

WL,i
13 : O(

v2

M2
)

WL,i
23 : O(

m

M
)

WR,i
12 : O(

v

M
)

(27)

It is assumed that the factors
λi23
λi33

, m
M and v

M have a similar level of suppression and that m and

v are of similar order. The upper-left 2× 2 part of V4321 is approximated up to O(mM /
λi23
λi33

):

V4321 ≈

(
1 WL,d

12 −WL,u
12

WL,u∗
12 −WL,d∗

12 1

)
(28)

Looking at the Wolfenstein parametrization [12], it can be seen that at this level of accuracy
this only yields one restriction on the parameters.

VCB =WL,d
12 −WL,u

12 (29)

Additional parameters can be eliminated by using the measurements of the top- and bottom-
quark.

Y i
diag =W i†

L Y
iW i

R

⇒

mt =
v√
2
λu23W

L,u∗
12 +

v√
2
λu33 −mWR,u∗

12 − v√
2
ΛuWL,u

23 +MWL,u
23 WR,u∗

12

mb =
v√
2
λd23W

L,d∗
12 +

v√
2
λd33 −mWR,d∗

12 − v√
2
ΛdWL,d

23 +MWL,d
23 WR,d∗

12

(30)

One can see that only the second term is not suppressed by the mass/Yukawa hierarchy and
therefore it dominates. Additionally, the hypothesis is made that the mixed Yukawa coupling
λd23 is equal to zero. This is done in order to get rid of all the couplings involving the first three
generations, such that only the new mass parameters (m,M,Λu and Λd) involving the fourth
generation remain.

λu33 =
mt

√
2

v

λd33 =
mb

√
2

v

VCB =WL,u
12 ⇔ λu23 =

√
2VCB(|m|2 +m2

t )

vmt

(31)

9
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Part III

U-quark decay

6 Decay widths

6.1 2-body decay

The transition amplitude for the two-body decay can be deduced from equation 24. This am-
plitude also has a right-handed contribution due to the SU(2) charge of the fourth generation.

iT = − ig2

2
√
2

(
V Ub
4321ū(p2)γ

µ(1− γ5)u(p1)ϵ
∗
µ(p3)−WR,d∗

12 ū(p2)γ
µ(1 + γ5)u(p1)ϵ

∗
µ(p3)

)
(32)

The calculation of the decay width is done in good approximation with the simplifications
mW = 0 and mb = 0, as their masses should be negligible in comparison to the U -quark mass.
The squared amplitude can then be summed over spin polarization and color final states and
averaged over the initial state configurations.∑̄

spin,col

T †T =
g22
16

(−ηµν −
p3µp3ν
(p3 · n)2

+
p3µnν + p3νnµ

p3 · n
)p1ρp2σ·(

|V Ub
4321|2

(
8(ηµσηνρ − ηµνησρ + ηµρησν)− 8iϵνρµσ

)
+|WR,d

12 |2
(
8(ηµσηνρ − ηµνησρ + ηµρησν) + 8iϵνρµσ

) )

n =


1
0
0
0

 p1 =


mu

0
0
0

 p2 =

(
p
−p⃗

)
p3 =

(
p
p⃗

)
(33)

While the terms with the metric tensor yield scalar products between the four momenta, the
terms with the Levi-Civita tensor are harder to handle. n and p1 have all space-like coordinates
equal to zero, which lets most terms including a factor of the Levi-Civita tensor go to zero. This
is however not clear for the terms including the factor

p3µp3ν
(p3·n)2 . Since p1 has to be taken with

the index 0 for a term to be non-zero, the remaining factor is a (negative) product of the three
entries of p⃗. For every Levi-Civita tensor, there are 6 such possibilities of which 3 are even and
3 are odd. Therefore, these terms cancel and it is sufficient to look at terms without a factor
ϵνρµσ.
Evaluating the scalar products and doing the phase space integral [13], yields:

ΓU→Wb =
g22mU

32π
(|V Ub

4321|2 + |WR,d
12 |2) (34)

Rewriting this in terms of the initial mass parameters, one gets:

mU =WL,u∗
13 WR,u

12 λu23
v√
2
+WL,u∗

23

v√
2
λu33W

R,u
12 +WL,u∗

23 m+
v√
2
ΛuWR,u

12 +M ≈M

|V Ub
4321|2 ≈

m2
t v

2|Λu|2

2M4
+
m2
bv

2|Λd|2

2M4
−

2Re(mtm
∗
bv

2Λu∗Λd)

2M4

|WR,d
12 |2 ≈ v2M2|Λd|2

2M4
+
m2m2

b

M4
+

√
2vRe(m∗MmbΛ

d∗)

M4

(35)

10
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The leading order contribution from |V Ub
4321|2 cancels. This renders the left-handed contribution

to be suppressed compared to the decay with a right-handed vertex and therefore only the
right-handed vertex contributes at leading and next-to-leading order. When the suppressed
hightest-order (next-to-next-to-leading order) terms are neglected, the decay width of this two-
body decay is given by.

ΓU→Wb =
g22M

32π

(
v2M2|Λd|2

2M4
+

√
2vRe(m∗MmbΛ

d∗)

M4

)
(36)

Note that there are no contributions from the left-handed vertices to this accuracy.

11
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6.2 3-body decay

As a next step, the decay width of the 3-body decay is to be found. Again, all particles in the
final state are assumed to be massless. For this, the Effective Field Theory (EFT) framework
is used [14], where it is assumed that the mass of the Leptoquark mLQ is much larger than the
U -quark mass, giving rise to 6-dimensional operators. The Leptoquark part of the Lagrangian
has already been shown in equation 3. To see the flavor structure of these vertices better, these
interaction vertices have to be written using the multiplets which were introduced in section 5.

L ⊃ − ig4√
3

(
ūLW

u†
L diag(0, /U

+
, /U

+
)W ν

LνL + d̄LW
d†
L diag(0, /U

+
, /U

+
)W e

LeL

+ ν̄LW
ν†
L diag(0, /U

−
, /U

−
)W u

LuL + ēLW
e†
L diag(0, /U

−
, /U

−
)W d

LdL

+ ūRW
u†
R diag(/U

+
, 0)W ν

RνR + d̄RW
d†
R diag(/U

+
, 0)W e

ReR

+ ν̄RW
ν†
R diag(/U

−
, 0)W u

RuR + ēRW
e†
R diag(/U

−
, 0)W d

RdR

)
(37)

It is interesting to take a closer look at the flavor structure of the process.

W i†
L diag(0, /U, /U)W j

L =

/U

W
i,L
12 W

j,L∗
12 +W i,L

13 W
j,L∗
13 W i,L

13 W
j,L∗
23 −W i,L

12 −W i,L
13 −W i,L

12 W
j,L
23

W i,L
23 W

j,L∗
13 −W j,L∗

12 1 +W i,L
23 W

j,L∗
23 W j,L

23 −W i,L
23

−W j,L∗
13 −W i,L∗

23 W j,L∗
12 W i,L∗

23 −W j,L∗
23 1 +W i,L∗

23 W j,L
23


W i†
R diag(/U, 0)W

j
R = /U

(
1 W j,R

12

W i,R∗
12 W i,R∗

12 W j,R
12

) (38)

These matrices are particularly interesting when one decides which flavors of neutrinos are
considered in the final state. One can see that the largest contribution in the left-handed part is
coming from the diagonal element, while for the right-handed vertices a decay into the ντ seems
to be favored. The decay into νµ is more heavily suppressed and is therefore neglected in this
thesis.

6.2.1 Wilson coefficients

In this chapter the EFT framework will be used to approximate the decay width for large
Leptoquark masses.

U(p1)

ν(p2)

τ(p3)

b(p4)

Figure 2: Feynman diagram of a 6-dimensional EFT operator describing the U -quark decay.

Using the Feynman gauge, one can predict the Dirac structure of these vertices. The different
right- and left-handed vertices in the full theory have to be accounted for too. Since the leading
order in the EFT power counting is the desired accuracy for this thesis, only the following terms
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from the EFT Lagrangian are relevant for the U -quark decay.

LEFT ⊃
CτL
Λ2

(ŪLγ
µντLτ̄LγµbL) +

CτLR
Λ2

(ŪLγ
µντLτ̄RγµbR)

+
CτRL
Λ2

(ŪRγ
µντRτ̄LγµbL) +

CτR
Λ2

(ŪRγ
µντRτ̄RγµbR) +

CNL
Λ2

(ŪLγ
µNLτ̄LγµbL)

+
CNLR
Λ2

(ŪLγ
µNLτ̄RγµbR) +

CNRL
Λ2

(ŪRγ
µNRτ̄LγµbL) +

CNR
Λ2

(ŪRγ
µNRτ̄RγµbR) (39)

The tree-level four-point function iTEFT (U → ντb), that arises from these EFT terms up to
order Λ2, has to be equal to the tree-level four-point function of the full theory up to order 1

m2
LQ

.

From equation 37 the Feynman rules and subsequently the full theory four-point function can
be deduced. During this step the Leptoquark propagator has to be rewritten in order to get a
power counting.

−iηµν
(p1 − p2)2 −m2

LQ

=
iηµν
m2
LQ

[
1 +

(p1 − p2)
2

m2
LQ

+O

( ( (p1 − p2)
2

m2
LQ

)
2

) ]
(p1 − p2)

2 = m2
U − 2mU |p2|

(40)

|p2| denotes the magnitude of the neutrino momentum in the center-of-mass frame of the U -
quark and is bound from above at |p2| = mU

2 due to energy conservation.
By setting equal the four-point functions, the tree level matching for the Wilson coefficients can
easily be read out.

Λ = mLQ

CτL = − ig
2
4

3
(W u,L∗

23 −W ν,L∗
23 )(1 +W e,L

23 W
d,L∗
23 )

CτLR = − ig
2
4

3
(W u,L∗

23 −W ν,L∗
23 )

CτRL = − ig
2
4

3
W u,R∗

12 (1 +W e,L
23 W

d,L∗
23 )

CτR = − ig
2
4

3
W u,R∗

12

CNL = − ig
2
4

3
(1 +W u,L∗

23 W ν,L
23 )(1 +W e,L

23 W
d,L∗
23 )

CNLR = − ig
2
4

3
(1 +W u,L∗

23 W ν,L
23 )

CNRL = − ig
2
4

3
W u,R∗

12 W ν,R
12 (1 +W e,L

23 W
d,L∗
23 )

CNR = − ig
2
4

3
W u,R∗

12 W ν,R
12

(41)

iTEFT (U → ντb) =
1

4m2
LQ

(
(CτL + CNL )ū(p2)γ

µ(1− γ5)u(p1)ū(p4)γµ(1− γ5)v(p3)

+ (CτLR + CNLR)ū(p2)γ
µ(1− γ5)u(p1)ū(p4)γµ(1 + γ5)v(p3)

+ (CτRL + CNRL)ū(p2)γ
µ(1 + γ5)u(p1)ū(p4)γµ(1− γ5)v(p3)

+ (CτR + CNR )ū(p2)γ
µ(1 + γ5)u(p1)ū(p4)γµ(1 + γ5)v(p3)

)
(42)

Note that ū(p2) are technically different for Wilson coefficients with different index τ/N . They
are put as the same here nevertheless, since both neutrinos ντ and N are approximated to be
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massless and thus have the same properties for this calculation.
A long calculation yields the following for the squared amplitude, which is summed over final
spin states and averaged over initial spin states. Note that for the decays analyzed in this thesis
the color summation gives a factor 1, since there are no color changing vertices involved.

∑̄
spin,col

|T |2 = 8

m4
LQ

( (
|CτL|2+|CNL |2+|CτR|2+|CNR |2+2Re(Cτ∗L C

N
L )+2Re(Cτ∗R C

N
R )
)
(p1p4)(p2p3)

+
(
|CτLR|2 + |CNLR|2 + |CτRL|2 + |CNRL|2 + 2Re(Cτ∗LRC

N
LR) + 2Re(Cτ∗RLC

N
RL)
)
(p1p3)(p2p4)

)
(43)

6.2.2 Phase space

Finally, it remains to do the phase space integral [15]. Below there is the connection between
the decay width and the squared transition amplitude [13].

dΓ =
(2π)4

2mU

∑̄
spin,col

|T |2δ4(p1 − p2 − p3 − p4)
d3p2d

3p3d
3p4

8(2π)9E2E3E4
(44)

For this integration it is useful to realize that the final state particles are on a plane in the rest
frame of the decaying particle. Therefore, the first angular integration around the z-axis can
already be done.

Figure 3: Schematic figure of the 3-body decay in the rest frame of the U -quark.

Γ =
2π

(2π)54mU

∫ 1

−1
dcos(θ2)

∫ mU
2

0
d|p2||p2|

∫
d3p3d

3p4
4|p3||p4|

∑̄
spin,col

|T |2δ4(p1 − p2 − p3 − p4)

U =

∫
d3p3d

3p4
4|p3||p4|

∑̄
spin,col

|T |2δ4(p1 − p2 − p3 − p4)

(45)

The last part of the integral U is Lorentz invariant and can therefore be evaluated in the center-
of-mass frame of the b-quark and the tauon. Performing this integration and thus eliminating
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the Dirac distribution, yields:

Γ =
1

4(2π)4mU

∫ mU
2

0
dp2p2

∫ 1

−1
dcos(θ2)

∫ 1

−1
dcos(θ∗)

∫ 2π

0
dϕ∗
(
a(p1p3)(p2p4) + b(p1p4)(p2p3)

)
a =

1

m4
LQ

(|CτLR|2 + |CNLR|2 + |CτRL|2 + |CNRL|2 + 2Re(Cτ∗LRC
N
LR) + 2Re(Cτ∗RLC

N
RL))

b =
1

m4
LQ

(|CτL|2 + |CNL |2 + |CτR|2 + |CNR |2 + 2Re(Cτ∗L C
N
L ) + 2Re(Cτ∗R C

N
R ))

(46)
The four-momenta used for this calculation are shown next. Note that the vectors p∗3 and p∗4 are
in the center-of-mass frame of the b-quark and τ . Accordingly they have to be rotated around
the y-axis with angle (θ2+π) and boosted along the z-axis with γ = mu−|p2|

m12
to get into the rest

frame of the U -quark.

p1 =


mU

0
0
0

 p2 = |p2|


1

sin(θ2)
0

cos(θ2)

 p∗3 =
m12

2


1

sin(θ∗)cos(ϕ∗)
sin(θ∗)sin(ϕ∗)

cos(θ∗)



p∗4 =
m12

2


1

−sin(θ∗)cos(ϕ∗)
−sin(θ∗)sin(ϕ∗)

−cos(θ∗)

 m12 =
√
m2
U − 2mU |p2|

(47)

The final result for the decay width is then attained by performing the remaining integrals.

ΓU→ντb =
(a+ b)m5

U

(2π)3192
(48)

The full expression can then be found by evaluating and expanding the variables a and b using
the mass and Yukawa hierarchy. Again, equation 35 is used to approximate the U -quark mass
using the Yukawa and mass parameters. Since the next-to-leading order vanishes, only the
leading order contribution is stated here:

ΓU→ντb =
g44M

5

(2π)3864m4
LQ

(49)

It is also interesting to study where the leading order contributions for the decay width are
coming from:

a =
1

m4
LQ

(|CτLR|2 + |CNLR|2 + |CτRL|2 + |CNRL|2 + 2Re(Cτ∗LRC
N
LR) + 2Re(Cτ∗RLC

N
RL))

LO
=

1

m4
LQ

(|CNLR|2)LO

b =
1

m4
LQ

(|CτL|2 + |CNL |2 + |CτR|2 + |CNR |2 + 2Re(Cτ∗L C
N
L ) + 2Re(Cτ∗R C

N
R ))

LO
=

1

m4
LQ

(|CNL |2)LO

(50)

One can see that the leading order contribution stems from the decay into a fourth generation
neutrino.
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7 The ratio R

Finally, all ingredients are ready to express the R ratio using the leading order contribution
from the two different U -quark decay widths. This leads to the following quantity for R:

R =
108g22v

2|Λd|2π2m4
LQ

g44m
6
U

(51)

Here, the fact has been used that the U -quark mass is equal to the mass parameter M in a good
approximation (see equation 35).
It is particularly interesting to look which decay channel dominates at which range of our mass
parameters. Since we have assumed that mU < mLQ in our calculation, the U -quark mass can
be parametrised in the following way using an ϵ between 0 < ϵ < 1.

mU = ϵmLQ (52)

Using this parametrization, the value ϵ0, where the two decay widths are the same, can be found.
For ϵ > ϵ0 the 3-body decay width is larger than the two-body decay width. For ϵ < ϵ0 the
reverse is the case.

ϵ0 =
( g22v

2|Λd|2π2108
g44m

2
LQ

)
1
6 ≈ 0.27

( Λd

0.1

)
1
3

( 3

g4

)
2
3

( 3TeV

mLQ

)
1
3 (53)

It is obvious that ϵ0 is suppressed by our mass hierarchy, since we have assumedmLQ > mU ≈M .
Nevertheless, this is not a large suppression, since the exponent yields that ϵ0 is only proportional

to
(

v
mLQ

)
1
3 .The only Yukawa factor in this equation is the mixing parameter Λd between the

fourth and third generation. When this mixing parameter is increased, it enlarges the range in
which the 2-body decay dominates. This does not come as a surprise, since only the 2-body
decay mode is dependent on flavor changing vertices at leading order. Furthermore, a numerical
reference value was found for ϵ0 using natural guesses for the SU(4) parameters: mLQ = 3 TeV ,
g4 = 3 and Λd = 10−1. For this numerical example, the U -quark mass at which the two decay
modes have the same strength is approximately 810 GeV. To get that numerical result, the
following values were used for the SM parameters g2 and v.

g2 = 6.5 · 10−1 v = 246GeV (54)
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Figure 4: R ratio as a function of the U -quark mass for different LQ masses.

It is interesting as well to plot R as a function of the U -quark mass. Again, the plots were
evaluated with the values from equation 54 and with the parameter values g4 = 3 and Λd = 10−1.
In figure 4 R is plotted for different masses of the Leptoquark mLQ. As expected for a fixed
mass of the Leptoquark mLQ, the 3-body decay channel gains relative strength with respect to
the weak decay when the U -quark mass mU is increased. However, it is important to note that
this only represents the leading order contributions from the EFT. Due to the large coupling
constant g4 = 3, the EFT power counting competes with the coupling strength. For large U -
quark masses (mU → mLQ), the EFT cannot be handled perturbatively anymore (see equation
40). Thus, the leading order contribution depicted in figure 4 gets less relevant for larger masses
mU .
Finally, one can define a mass mU,0 = ϵ0mLQ corresponding to the U quark mass at which the
decay widths of the two modes are the same. Equation 53 states that the factor ϵ0 increases
when the Leptoquark mass mLQ is decreased. However, this is only relative to the Leptoquark
mass mLQ, which is not fixed itself. It is therefore interesting to see how the corresponding mass
mU,0 changes. In the plots in figure 4 that change can be easily seen. The mass mU,0 increases
with an increasing Leptoquark mass, even though it gets relatively smaller compared to mLQ.
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Part IV

Conclusions & Outlook

4321 models are interesting, since they could give an explanation for the deviation to Standard
Model predictions in B meson decays. In this thesis the decay of a fourth generation U -quark
was studied for the 4321-framework. In the specific model that was chosen, the third and fourth
generation behave differently and Lepton flavor-universality is only given approximately for low
energies. Using assumptions about the mass hierarchy and neglecting small masses, the decay
widths for the two decay modes were computed separately up to next-to-leading order in the
mass hierarchy. There is the decay mode involving the weak interaction (U → Wb) and the
Leptoquark decay mode into three particles (U → νbτ). The leading order decay widths were
then compared using the ratio R between the two decay widths and R was plotted as a function
of the U -quark mass for different Leptoquark masses.
As a next step, it would be interesting to calculate the decay widths with more orders in the
mass hierarchy. Additionally, the ratio R could also be analyzed using more orders in the decay
widths and thus getting a more exact result. Furthermore, not neglecting the small masses
(mW ,mb,mτ and mν) in the decay width calculations would also increase the accuracy of this
analysis.
Finally, it is also important to retain the connection to the experiments. Consequently, the
anomalies in flavor physics should be studied further in experiments and more data on this
subject is needed to get statistically more significant results. By studying the B-meson decay
and confirming or discarding the anomalies, the relevance of the 4321-models can be changed.
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