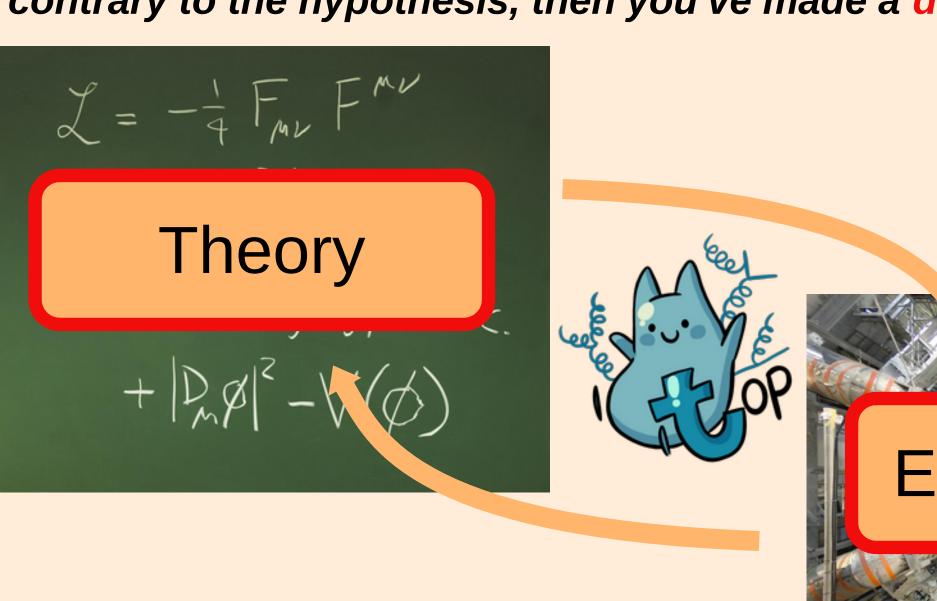
Precision Calculations in Particle Physics

G. Fontana, M. Marcoli, G. Stagnitto

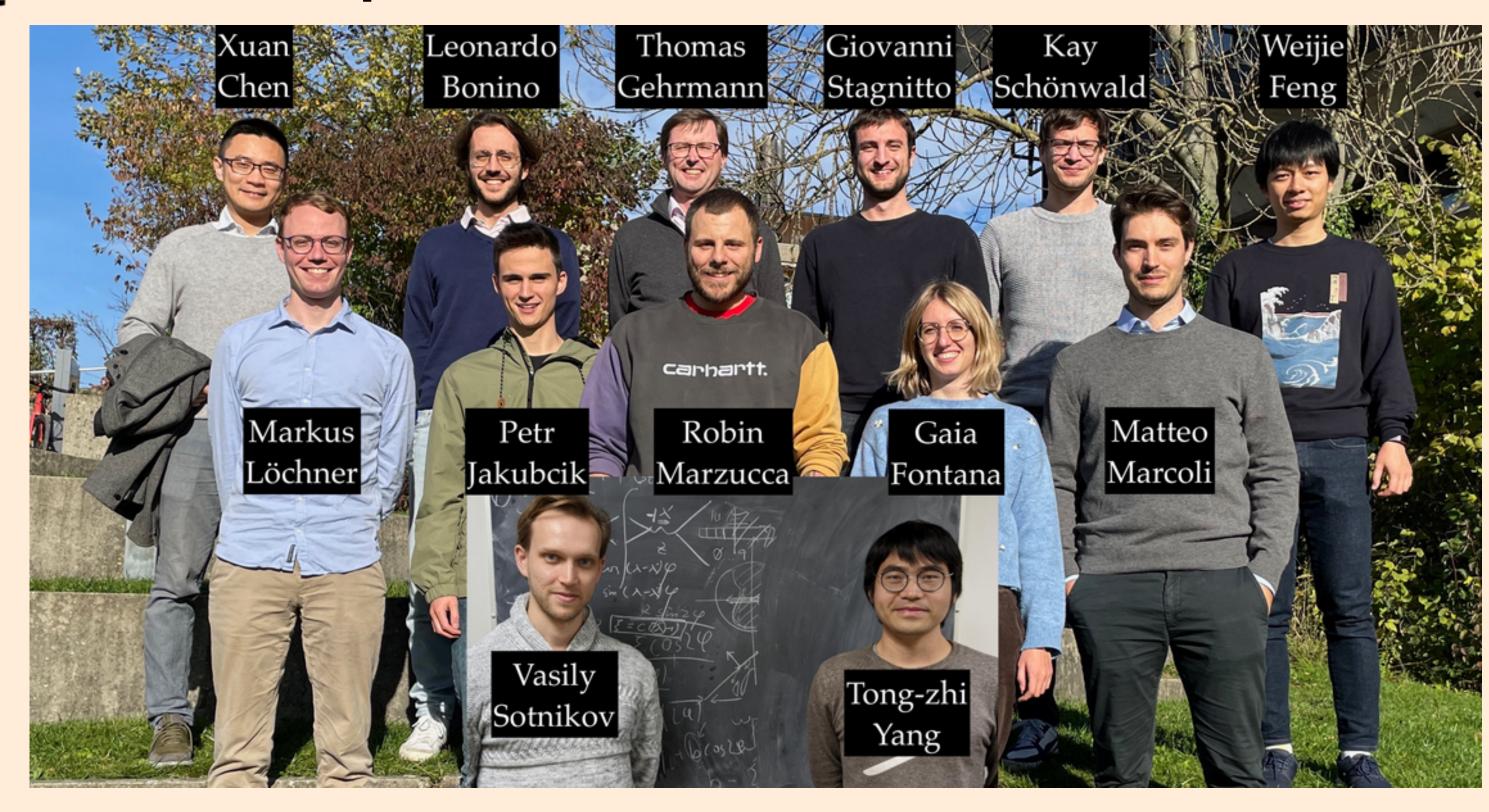
"There are two possible outcomes: if the result confirms the hypothesis, then you've made a measurement. If the result is contrary to the hypothesis, then you've made a discovery."

Group of Prof. Dr. Thomas Gehrmann



"Banana" graph:

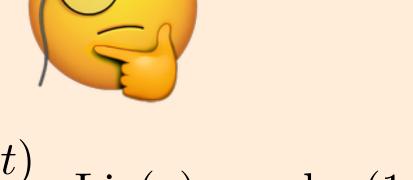
E. Fermi

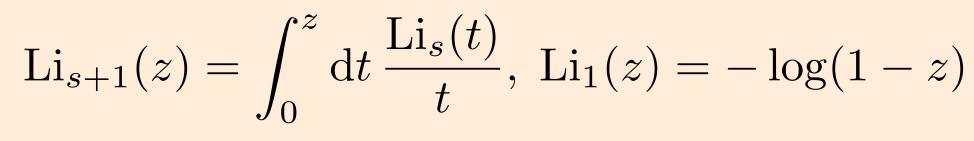


Fantastic functions and where to find them

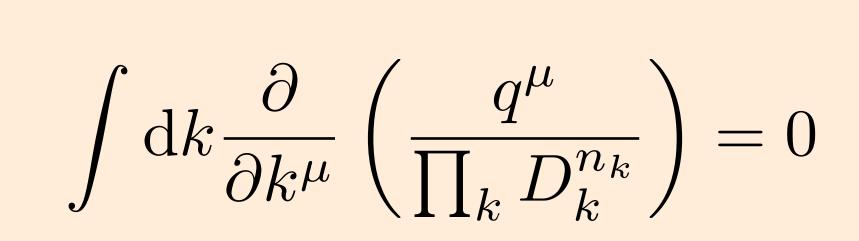
The evaluation of multiloop Feynman diagrams requires special functions:

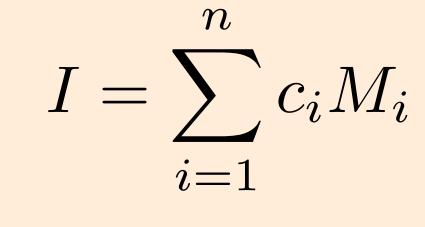
- Polylogarithms;
- Harmonic Polylogarithms;
- Goncharov multiple Polylogarithms;
- Elliptic Integrals;
- Unknown functions??





Thousands of different Feynman integrals are needed to compute loop scattering amplitudes. We use IBP relations to reduce them to a basis of **Master Integrals**.





Let the computer do the math!

Computer algebra programs are used to perform symbolic calculations which would be unfeasible on paper: Mathematica, Maple, FORM, Fermat, GiNac...

Solve[$\{x + y + z = 2, 2x - 6z = -2, 3z + y = 1\}, \{x, y, z\}$] (* linear systems *)

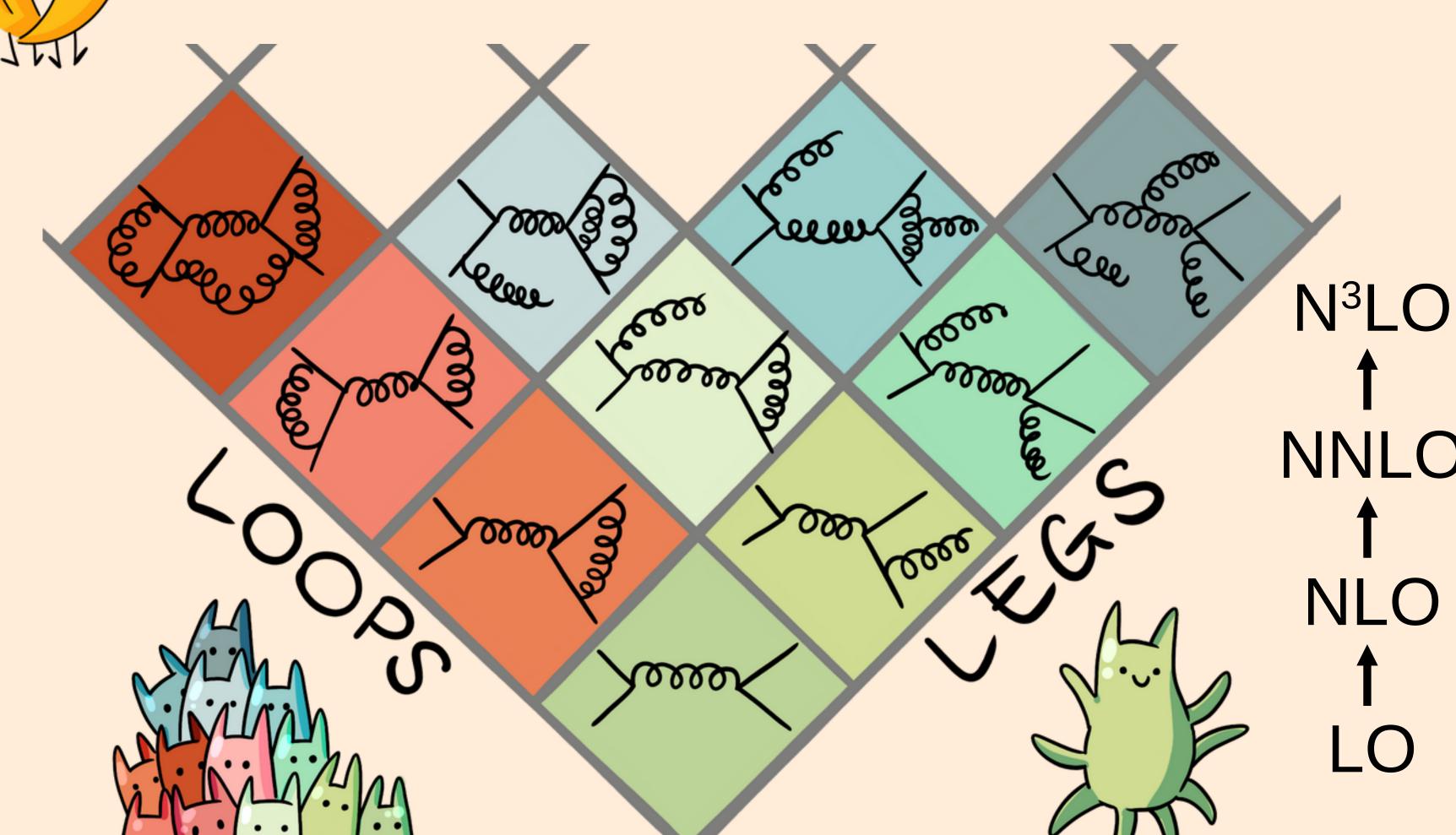
 $\{ \{ x \rightarrow 5, y \rightarrow -5, z \rightarrow 2 \} \}$

DSolve[D[f[x], x] = f[x]/x, f[x], x](* differential equations *)

 $\{ \{ f[x] \rightarrow x c_1 \} \}$

Series [Gamma [1 - ϵ] * Gamma [1 + ϵ] / ϵ ^2, { ϵ , 0, 3}] (* Laurent expansion *)

 $\frac{1}{\epsilon^2} + \frac{\pi^2}{6} + \frac{7\pi^4 \epsilon^2}{360} + 0[\epsilon]^4$



Monte Carlo is the way

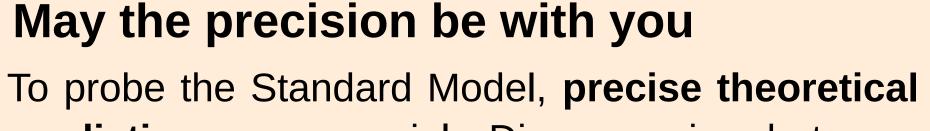
To reproduce the exprimental setup we rely on numerical simulations, in particular to Monte Carlo event generators. In our group we develop NNLOJET.

Everything blows up

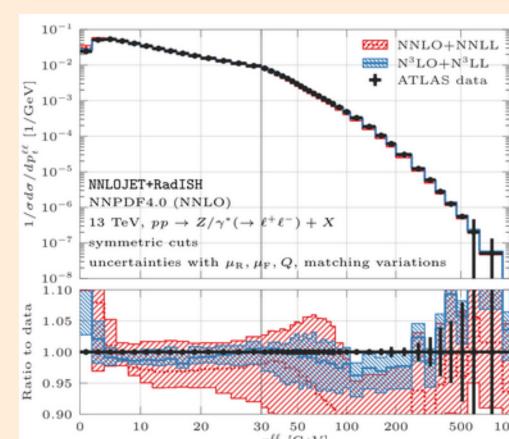
In intermediate steps of high order calculations, infinities arise. These infinities need to be properly regularized so they can cancel in the final finite result. This is done with subtraction methods.

THIS IS FINE.

$$d\hat{\sigma}_{NLO} = \int_{n} [d\hat{\sigma}^{V} - d\hat{\sigma}^{T}] + \int_{n+1} [d\hat{\sigma}^{R} - d\hat{\sigma}^{S}]$$

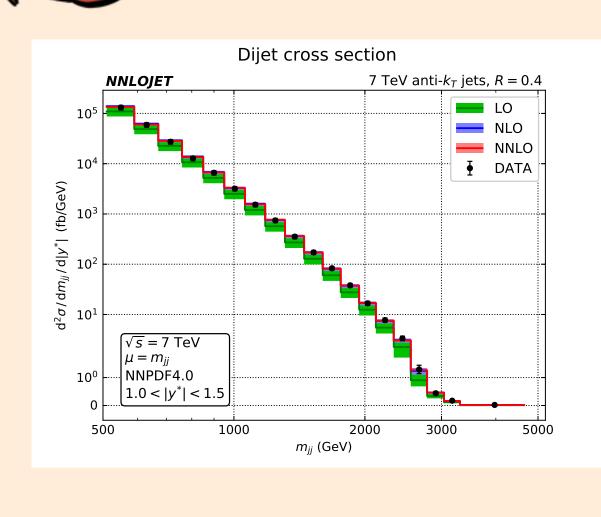


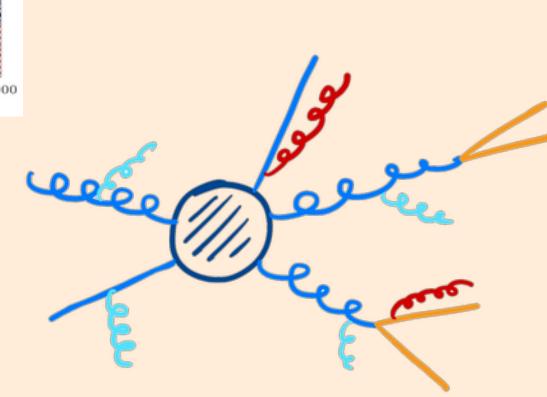
predictions are crucial. Discrepancies between data and theory can hint to the presence of **new** physics. For benchmark processes we reach N³LO precision!



Particle party

The complexity of precision calculations dramatically increases with the number of particles involved. The next frontier of NNLO calculations is represented by $2 \rightarrow 3$ processes.





I see you!

In some measurements experiments identify strongly interacting particles in the final-state. On the theoretical side, this requires a fragmentation function to describe the transition from quarks and gluons to hadrons.

