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Place a rubber duck on your monitor and describe your problems to it. There is
something magical about stating your problems aloud that makes the solution more
clear1

My trusted rubber duck would sometimes even nod or say a few words.

1Also called Rubber Ducking. From ’The Pragmatic Programmer: From Journeyman to Master
rubber ducking.’



Acknowledgements
Firstly, I would like to thank Ben Moore for giving me the opportunity to work on
this project. One of Ben’s first decision was assign the direct supervision of Davide
Martizzi. This was one of the best decisions ever made regarding this thesis. I owe
Ben a great deal more, but since he knows it I am not going to go into further detail.
I would like to thank him for his support and also the trust he has given me. I also
would like to thank Romain Teyssier who has provided constant support and help,
especially for questions related to the code used in this thesis, but also for his general
open ear and eye for various other problems—often until late at night. If something
is suspicious Romain is the guy to detect it and very often solve it. My daily man
was Davide Martizzi. He is a hero! I stopped counting the number of times per day
I came into his office to ask various questions. I guess our e-mail exchange while he
was away at a conference that peaked at about 50 e-mails in one day is pretty epic
(feedback mechanism we beat you...). His patient support, his sharing joy when I was
happy about something and his moral support when I was less happy is deeply valued.
I think we have been a great team! Related to this I would also thank and apologise to
his office mates Volker bla for enduring me during my visits to the office. I also have
to thank Markus Wetzstein, a temporarily office mate of Davide. That his computer
was broken and that he needed to stay in Davide’s office was a lucky strike. Without
him, Davide and I would probably still sitting at the office table trying to debug the
initial condition code and figure out what on earth was going wrong. His knowledge
into the deep deep pond of Fortran helped to proceed with this thesis. I also have to
thank him however for letting me stay at his place a few times and supporting me while
writing up this thesis. I thank Andreas Bleuler for answering my various PYMSES
related questions; Doug Potter without whom this Institute would not run at all
and who answered my thousand e-mails regarding the many computer and hardware
problems I came across; Regina Schmidt for being the angel of the Institute. Her
uncomplicated support, positive outlook on life, and her ability to move away problems
help the whole Institute, including me. I also thank all the various Institute members
who help to make this Institute what it is and providing it with this amazing spirit
probably unique in the world. I am super grateful to my parents Barbara, and Ueli
as well as my amazing sister Elisabeth who constantly supported me during my whole
studies and phases while doing so. They also endured my stay at their home at the end
stage of this thesis. I also have to thank them for the various times they brought me
back to the real world and provided me with a necessary reality check. Without my
family I guess I would not have started to study Physics and probably would not have
finished one year of studying. And this means very much to me! I am most grateful
to my boyfriend Jonathan Coles. He provided constant support during this thesis,
often late into the night, even after moving away to Paris. He is the best rubber duck I

iv



Contents

came across, silently listening to my grumbling about my code, smiling when I figured
out the problem on my own, asking some questions or nodding to help me figure out
the problem, and sitting down and helping me when nothing of the above worked. I
also have to thank him for his amazingly patient correcting of the text of this thesis
(probably even parts of this acknowledgement). What else is left to say other than
that we work together like Peas and Carrots.
As I tend to get emotional I stop writing this acknowledgements and apologise if I
have forgotten anyone.

v



1. Introduction
The night sky has always fascinated mankind and it comes with no surprise that
astronomy is one of the oldest sciences. Prehistoric cultures could only use their
imaginations to explain what they saw in the night sky, but it was not until the 16th
and 17th century that astronomers like Galilei, Kepler, and later Newton began to
develop a mathematical based theories to explain their observations. The concept of
galaxies being rotating bodies of a huge number of stars held together by gravitational
forces was first introduced in 1750 by the English astronomer Thomas Wright and
further developed by the German philosopher Immanuel Kant in 1755 who referred to
them as island universes. The dispute over the nature of what were once named spiral
nebulae stands as one of the most significant in the development of astronomy, and
can be marked as the beginning of the study of galaxies. The existence of external
galaxies outside of our Milky Way was confirmed by Heber D. Curtis, Knut Lundmark
and Edwin Hubble in the early 1920s.

Galaxy formation has played an important role in answering questions about struc-
ture formation, by providing an observable, natural testing ground for theories about
the origin and evolution of the Universe. The modern galaxy formation theory is set
within the larger scale cosmological model, where cosmology is the field of astronomy
that studies the origin, dynamics, and evolution of the universe. It is an important re-
quirement for any theory of structure formation to reproduce the observed properties of
galaxies, such as spatial distribution, stellar properties, and morphology. Within these
constraints a theory has emerged in which the formation of structure in the Universe
is seeded by tiny perturbations in the primordial cosmic density field which expanded
to larger scales by a rapid expansion. The success of that model lies in largely ex-
plaining the cosmic microwave background (CMB). It makes an assumption that
there exists an invisible, collisionless, self-gravitating kind of matter, also called dark
matter, that strongly affects the gravitational evolution of the Universe. There are
many reasons to suspect the existence of dark matter, such as the observed rotation
curves of galaxies, gravitational lensing effects, and the velocity distribution of galax-
ies in clusters. The dark matter component behaves like a collisionless fluid which is
often modeled as a pressureless fluid. Fluctuations in the dark matter density field at
very early times are assumed to grow because of their self-gravity and then undergo
gravitational collapse.

The fully analytical linear theory of cosmological perturbations of dark matter is well
understood and provides an accurate description of the early stage of its evolution.
Once the evolution leads to complicated structure formation, the linear perturbative
calculations break down as the perturbations become non-linear. The only way to
study their further evolution is through numerical calculations. Empirical models,
together with N -body simulations, show that these perturbations start to cluster to-
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gether to form a gravitationally pressure-supported collapsed system called a halo. In
the standard picture of cosmology it is predicted that small halos form before lager
halos, evolving hierarchically to form a network of sheets and chains called the cos-
mic web. Halo mergers and accretion of satellite halos are also thought to play a very
important role in shaping the properties of the most massive halos.

Gravity alone does not, however, provide a complete description of the universe. In
particularly, dark matter does not interact with the luminous matter we are able to
see, other than gravitationally. The luminous matter is generally referred to as bary-
onic matter as leptons provide a negligible contribution to the total mass. It includes
standard particles, nucleons, and photons. A combination of experimental measures
paint a picture in which the energy density of the Universe is shared between dark
energy (68.3%), dark matter (26.8%), and baryonic matter (4.9%). Taking into ac-
count the baryons, simulations become even more challenging because of the collisional
nature of the baryonic matter as well as the complexity of the physics involved in the
processes. From the structure formation point of view it is believed that baryons are
dragged along by the gravitationally dominant dark matter and concentrate in the
deep potential wells of the halos forming a hot gaseous halo. How much baryonic
material the dark matter is able to accrete depends upon the depth of the potential
well and the pressure of the baryons. The hot gas in the halo is able to cool down by
radiative cooling. The cooling reduces the pressure support and causes the accretion
of cold gas from the halo onto a central disc and stars star to form. There are however
still many open questions. The role of many feedback mechanisms such as galactic
winds, momentum feedback from supernovae, and feedback provided by the accretion
of gas onto a supermassive black hole in the center of the galaxy (AGN) still has to
be explored in greater detail. Also the processes of star formation within the picture
of galaxy formation, the baryonic structure and evolution has to be better understood.

A reasonable galaxy formation theory not only has to explain how and where struc-
ture arise, it also has to explain the physics involved before star formation and the
shape of galaxies. There is an enormous variety of galaxies to be found in nature,
from scattered dwarfs to impressive large spirals. The individual structure of a galaxy
depends on how it was formed and evolved. The amount of activity taking place in-
side the galaxy also varies with each galaxy. Where some act like star-producing sites,
others have shut down star production long ago. Despite the huge variety of galaxies,
the overwhelming majority of bright galaxies exist in one of three main forms, namely,
spiral galaxies such as our own Milky Way in the shape of a flattened disk hosting
a spiral pattern, lenticular galaxies also in the shape of a circular disk but hosting
a central bulge, and elliptical galaxies shaped something like an ellipsoidal football.
The remaining few are lumpy and irregular in appearance and are usually categorised
as irregular galaxies.

In March 2012 a discovery of a rare, rectangular-shaped galaxy (LEDA 074886) was
reported (Graham et al., 2012). In addition to being rectangular, LEDA 074886 also
features a prominent disk inside it, aligned edge-on to our line-of-sight, and is thought
to be a star formation region. This special rectangular galaxy opens questions about its
formation. It is already known that mergers play an important role in the formation
and evolution of a galaxy. It is suspected that LEDA 074886 is also formed by a
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merger of two galaxies. Because of its boxy outer part and discy stellar central region,
the galaxy shows characteristics of two types of galaxy mergers. Generally, elliptical
galaxies lack the ingredients to form new stars. N -body simulations have shown that
boxy shaped galaxies can form by mergers but they generally show little star forming
activity. However, simulations have also shown that gas rich mergers usually do not
build boxy galaxies, whereas they do have traces of a central star forming region. The
purpose of this thesis is to study the role of mergers in the formation of boxy galaxies
and to better understand the processes that can lead to a star formation region in the
middle of the galaxy.

In this thesis a number of galaxy merger simulations have been performed to try
to understand the conditions required to reproduce galaxies like LEDA 074886. In
order to make these simulations, and their subsequent analysis, possible, several new
software tools were also developed.

In section 2 we introduce in more detail the theoretical basis of cosmology and
galaxy formation. We then discuss the observations of LEDA 074886 in section 4. The
computational techniques used to perform simulations are described in section 3. Our
methods for running the particular simulations of our galaxy mergers are detailed in
section 5 and a discussion of the results are provided in section 9. The new computer
code that was developed over the course of this work is described in section 7 and the
verification tests in section 8. We conclude with a summarising discussion in section
9.

3



2. Theory
In this Chapter we first describe the theoretical framework which is able to explain
the way in which primordial homogeneous and isotropic Universe is able to evolve and
form structures. Because dark matter is the main constituent of the cosmic structure it
is important to understand how dark matter behaves. It is explained how gravitational
instabilities lead to dark matter halos forming a cosmic web, which is important for
the stability of galaxies. It then continues to explain the structure and morphology of
the Galaxies. A special emphasis is made in explaining the gravitational interaction
of the Galaxies as results discussed in those sections are used to set up the simulations
done for this thesis.

2.1. From Cosmological Perturbations to the
Formation of Dark Matter Halos

Broadly speaking, the Universe consists of an immensely varied array of galaxies, neb-
ulae, and other baryonic objects. The distribution of this structure is clearly inhomo-
geneous and anisotropic. However, on scales larger than 100 h−1 Mpc we will assume
that the Universe is actually homogeneous and isotropic. Under these assumptions,
also known as the Copernican principle, the universe looks the same irrespective of
the location and direction in which one looks. The Einsteins field equations

Gµν + Λgµν = 8πGTµν (2.1)

relate the energy-density tensor Tµν to the Einstein space-time tensor Gµν and a metric
gµν . Here we also include a cosmological constant Λ to account for the expansion
of the Universe. From the assumption of the Copernican principle we can write down
the so-called Friedmann, Lamaitre, Robertson, Walker (FLRW) metric

ds2 = −dt2 + a2(t)
[

dr2

1−Kr2 + r2dΩ2
]

(2.2)

where a is the scale factor.
From these equations we can already say much about the evolution of the Uni-

verse. Combining the Einstein field equations and the FLRW metric we can derive the
Friedmann equations

ä

a
= −4πG

3 (ρ+ 3p) (2.3)(
ȧ

a

)2
= 8πG

3 ρ− K

a2 (2.4)
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2.1. FROM COSMOLOGICAL PERTURBATIONS TO THE FORMATION OF DM HALOS

where ρ is the energy density, and p is the pressure, which govern the expansion rate
of the Universe. The equations can be simplified by defining the Hubble parameter
H := ȧ

a . They form the base of our current cosmological model and successfully
describe the average expansion of the universe on large scales. In addition, rho can
be expressed as a combination of densities corresponding to different components such
as photons, dark matter, and dark energy. This model also is successful in describing
the evolution of the Universe from a hot, dense initial state dominated by radiation to
the cool, low density state dominated by non-relativistic matter and vacuum energy
at the present day. This standard model depends upon a few important observational
quantities such as the expansion rate ȧ, the temperature of the present microwave
background radiation (TCMB = 2.75 K), the density of visible matter (4.9%), dark
matter (26.8%), and dark vacuum energy (68.3%).

Since the assumption of homogeneity is incorrect on small scales owing to the pres-
ence of the stars and galaxies in our Universe, there therefore must be small inhomo-
geneities present at a certain time in the history of our Universe. Observations of the
cosmic microwave background (CMB) greatly support this idea. The CMB was
created at the point where photons stopped interacting with electrons and the opaque
Universe became, to first order, transparent to radiation. This event is imprinted in
the Universe on the last scattering surface or the cosmic microwave background.
The photons which were released during this recombination could travel relatively
undisturbed through space to us at the present time and cooled down through the
expansion of the Universe to give a homogeneous blackbody radiation field with a
mean temperature of TCMB = 2.75 K. Small temperature deviations on the order of
10−5K have been observed in the temperature field. These fluctuations are coupled by
the Boltzmann equation ρ ∝ T 4 to perturbations in the matter field which possibly
have quantum mechanical origins. The primordial fluctuations are thought to have
been amplified to macroscopic scales by a rapid expansion of the Universe known as
inflation. Inflation is believed to be produced by the presence of a quantum scalar field
slowly rolling down from a false to a true vacuum. While doing so, the field maintains
an approximately constant energy density and causes the Universe to expand expo-
nentially for a brief period of time. Current theories of inflation predict the fluctuation
field to be distributed as a Gaussian random field. In this case, the linear density is
completely determined by its power spectrum, or equivalently its two-point correlation
function. The primordial power spectrum is assumed to change during the evolution in
the early Universe due to various processes such as gravitational collapse, the effects of
pressure on particles, and dissipative processes. In general, modes of short wavelength
reduce their amplitudes relative to the change of the modes of long wavelengths. This
effect can be described with the transfer function, T (k), which gives the ratio of the
later-time amplitude of a mode with its initial value:

T (k) = δk(z0)
δk(z)D(k) (2.5)

where D(z) is the linear growth factor extrapolated to the present. This, in turn, is
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2.1. FROM COSMOLOGICAL PERTURBATIONS TO THE FORMATION OF DM HALOS

related to the power spectrum though

P (k, z) = P0(k)T 2(k) D(z)
D(z0) . (2.6)

Determining the transfer function is therefore a very valuable and powerful tool for
understanding the large scale structures of the Universe. The currently best pub-
licly available code to calculate accurate results of transfer functions is thought to be
CMBFAST (Seljak & Zaldarriaga, 1996).

2.1.1. Linear Perturbation Approach
To describe and understand the evolution of the density inhomogeneities at early
times a perturbative approach is usually used. In this approach, the homogeneous and
isotropic FLRW model is usually used as a background solution and the dark matter
is approximated as a fluid with density ρ but without pressure. This approach was
first applied by Jeans (1902) to study the instabilities in evolving clouds of gas in the
context of a static background fluid. Such a fluid evolves according to the following
coupled differential equations

∂ρ

∂t
+∇ · (ρv) = 0 Continuity (2.7)

∂v
∂t

+ (v · ∇) v = −∇φ Euler

∇2φ = 4πGρ Poisson

Working in the comoving coordinates r = a(t)x and perturbing the density and
potential as

ρ = 〈ρ〉 (1 + δ) (2.8)
∇2φ̂ = ∇2φ− 4πG〈ρ〉a2

and only keeping the small quantities ẋ and δ up to first order, the fluid equations
become

∂δ

∂t
+∇ẋ = 0 Continuity (2.9)

ẍ + 2Hẋ = ∇φ̂
a2 Euler

∇2φ̂

a2 = 4πG〈ρ〉δ Poisson

By taking the divergence of the Euler Equation and substituting ∇ẋ and ∇ẍ using the
Continuity and Euler equations we obtain the first order perturbation growth equation
for a pressureless fluid

δ̈ + 2Hδ̇ = 4πG〈ρ〉δ (2.10)
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2.1. FROM COSMOLOGICAL PERTURBATIONS TO THE FORMATION OF DM HALOS

or written in terms of the density parameter Ω = 8πG
3H ρ,

δ̈ + 2Hδ̇ = 3
2H

2Ωδ . (2.11)

Here, the Hubble expansion H gives rise to a drag term preventing exponential growth
of the perturbations. This second order differential equation has two solutions cor-
responding to a growing mode and a decaying mode. We are only interested in the
growing mode solution, since if the decaying mode exists it would decay with time.
We can write this growing mode as

δ(t) = δ0D(t) (2.12)

where D(t) is the growth factor of the perturbations. For example, for a flat Ωm = 1
Universe together with the Friedmann equations,

D(a) ∝ t2/3 ∝ a . (2.13)

This equation is approximately valid at early times where Ωm → 1. In a low density
Universe the growth of the perturbations slows as Ωm decreases.

Taking the Fourier Transformation of each overdensity term

δ =
∑

k

δke
−ikx (2.14)

one can show that each x-mode evolves independently and follows the differential
equation

δ̈k + 2Hδ̇k = 4πG〈ρ〉δ (2.15)

2.1.2. Gravitational Clustering of Dark Matter
Above we have discussed the origin of small fluctuations and their expansion in time.
The above derivations have all been made with the linearised perturbation equations.
At some point, however, gravity eventually will cause the collapse of overdensities
to form non-linear gravitationally bound objects. For the equations where δ � 1,
the non-linearity of Einstein’s equations becomes evident, making a fully analytical
explanation much more difficult. However in limiting cases, notably the large scale
limit, it is possible to extend some of the simple results of linear theory to higher
order.

A useful special case is the Zel’dovich approximation which can also be used to
set up initial conditions for a cosmological N -body simulation. Another simple but
different approach is the spherical collapse model which also provides a useful insight
in understanding the general case of structure formation. In the cold dark matter
scenario, large scale structures, as well as galaxies, are though to be built by a process
of hierarchical clustering: Initial overdensities are amplified by gravitational growth
and eventually become bound objects. An important factor for theories of structure
formation is the abundance of such bound dark matter clumps. To first order the
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2.1. FROM COSMOLOGICAL PERTURBATIONS TO THE FORMATION OF DM HALOS

abundance of a halo of mass M will be a function of mass only. The Press-Schechter
theory (Press & Schechter, 1974), which uses the spherical top collapse model and
linear growth theory, gives an intuitive and useful analytic description of this mass
function.

Zel’dovich approximation

The Zel’dovich approximation (Zel’dovich, 1970) provides a simple analytical model
of the gravitational evolution of density inhomogeneities. It also provides a convenient
way of setting up the initial conditions of a cosmological N -body simulation. The ZA
arises from Newtonian theory but it has been shown that the approximation, as well
as its second order improvements, can be derived in a general relativistic framework
for cosmology (Rampf & Buchert, 2012; Rigopoulos & Valkenburg, 2012). Rather
than observing a continuum quantity such as pressure or density, the ZA looks at
the time varying Lagrangian motion of a fluid element from the point of view of a
particle. In addition, the motion of the particle is studied in a comoving coordinate
system rather than working out the development of the perturbation in some external
Eulerian reference frame. If the comoving coordinate of a particle at the center of the
perturbation is q, the Eulerian position x at time t is given by

x(t) = q + Ψ(q, t) (2.16)

where Ψ is the displacement of the particle and satisfies the Lagrangian equation of
motion

∂2Ψ
∂t2

+ 2H∂Ψ
∂t

= −∇xφ . (2.17)

The density contrast δ(x, t) = det (∂xi/∂qj)−1 − 1 is determined with equation 2.17
as well as the Poisson equation now written in terms of the density parameter Ω

∇2
xφ = 3

2H
2Ωδ (2.18)

The ZA approach now makes the assumption that the displacement Ψ scales with the
linear growth factor (to first order)

Ψ ∝ −D∇xφ0 (2.19)

where the φ0 is the potential at the initial time t0. It is important to note that with
this approximation an assumption about the dynamics of the particles is made whereas
the geometry is left to be chosen freely. With this assumption it can be shown that
the displacement Ψ follows the equation

∂2Ψ
∂t2

+ 2H∂Ψ
∂t

= 3
2H

2ΩΨ (2.20)

The two equations 2.19 and 2.20 provide an approximation for the gravitational col-
lapse. They are only valid as long as the fluid elements from different positions never
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2.1. FROM COSMOLOGICAL PERTURBATIONS TO THE FORMATION OF DM HALOS

coincide in Eulerian coordinates. This approximation therefore breaks when shell
crossings occur.

The above description is often used to construct initial conditions for an N -body
simulation (Doroshkevich et al., 1980; Bertschinger, 1998). The ZA is also an important
tool in understanding N -body simulations. For this we slightly rewrite equation 2.16
as

x(t) = a(t)q + b(t)P(q) (2.21)

where the displacement is now parameterised by some function P(q). The Zel’dovich
approximation to the displacement manifests itself now in describing the motion of
each particle by a linearised deformation tensor

S = |dxi/dqi| = a(t)δij + b(t)∂xi/∂qj . (2.22)

Transforming S into the coordinate system of the principal axes S is diagonalised:

S =

a(t)− αb(t) 0 0
0 a(t)− βb(t) 0
0 0 a(t)− γb(t)

 (2.23)

where here P(q) is now represented by three constants α, β, and γ related to the
principal axes of the local ellipsoid. Due to mass conservation the evolution of the
density is described by

ρ [a(t)− αb(t)] [a(t)− βb(t)] [γb(t)] = 〈ρ〉a3(t) (2.24)

where 〈ρ〉 is the mean density of the matter in the Universe. The density will approach
a singularity along the largest of the principle axes. The ZA therefore shows that
collapse first occurs along one direction into a planar configuration forming the so-
called pancakes. Shell crossings occur when the value inside one of the brackets of
equation 2.24 vanishes e.g. a(t)−αb(t) = 0. At this point the density formally goes to
infinity and the ZA breaks down. In reality, the density does not go to infinity since
conservation of angular momentum in the dark matter particles prevents singular
collapse. Angular momentum is conserved because of the nondissipative nature of
dark matter. Results of numerical N -body simulations have shown that the ZA is
remarkably accurate until shell crossing happens (Coles et al., 1993).

Spherical Top-Hat Collapse Model

The spherical top-hat collapse model is an alternative way to develop a better un-
derstanding of the formation of structures from the evolution of perturbations in the
nonlinear regime. As shown above, the ZA model makes an assumption and approx-
imation to the dynamics but makes no restriction on the particular geometry of the
system. The spherical collapse model takes a completely different approach by assum-
ing a spherical symmetric region with an uniform overdensity δ0 at initial time t0 in
an otherwise critical density matter dominated Universe. It makes no assumptions
on the dynamics of the system. With the help of Birkhoff’s theorem the spherical
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2.1. FROM COSMOLOGICAL PERTURBATIONS TO THE FORMATION OF DM HALOS

overdense region can be treated as a separate Universe where its radius is a function
of time evolving with Friedmann’s equations. For the evolution of the perturbations
we therefore can look at the Friedmann equation for the overdensity

ȧ2 = Ωi
a

+ Ωi − 1. (2.25)

where the index i denotes different density components. This differential equation has
a parametric solution as a function of θ ∈ [0, 2π)

a = amax

2 (1− cos θ) (2.26)

t = tmax

π
(θ − sin θ) (2.27)

where amax = a0Ωi(1 − Ωi)−1. For early times, when θ is small, we can expand the
function to first order and obtain a linear theory for the development of the overdense
region

alin(t) = 1
4

(
6πt
tmax

)[
1− 1

20

(
6πt
tmax

)2/3
]

(2.28)

The first term on the right hand side corresponds to the background expansion of the
critical density of the Universe. It scales for early times as δ ∝ t2/3. If we now assume
that the initial mass of the system is M = 4π

3 〈ρ〉r
3 and enhance the density by an

overdensity δ then we can argue that the radius must shrink by δr in order to conserve
the enclosed mass:

M = 4π
3 〈ρ〉r

3 (1 + δ) (1 + δr)3 (2.29)

For the equation to balance, we must have that (1 + δ)(1 + δr)3 = 1. Expanding to
first order we derive a prediction for the density contrast

δ ≈ −3δr = 3
20

(
6πt
tmax

)
(2.30)

Using the equations above, a few key events in the history of the density pertur-
bations can be quantified. At the beginning, overdense regions grow with the Hubble
expansion. At a specific time this expansion stops under its own self gravity, reaching
a maximum expansion at θ = π. This turnaround occurs when the linear density
contrast is δturnaround ≈ 1.06. Hence, shortly after a perturbation’s overdensity ex-
ceeds unity, it turns around and begins to contract. The final collapse occurs when
θ = 2π. The overdensity at this point is δcollapse ≈ 1.69. It is at this turnover where
the spherical collapse model starts to become invalid and it can be shown that the
actual overdensity will become infinite at tend. Clearly, the assumption of a perfectly
spherically symmetric, pressureless overdensity is ideal and we do not really expect
the collapse to continue to a singularity. In fact, the overdense regions virialise rather
than collapsing to a point because dark matter accumulates a net angular momentum
from torques in the last scattering surface. Because of the collisionless nature of dark
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matter it cannot dissipate this angular momentum which halts the collapse. The dark
matter particles eventually obtain virial equilibrium through dynamical friction which
results in a pressure-supported virialised collapsed structure commonly known as a
halo. The average density within the virialised object is usually estimated by assum-
ing a virialized radius of half of the turnaround radius. The density of the spherical
region will therefore increase by a factor of eight until virilisation whereas the density
of the non-virialised region increases only by a factor of four. This occurs when the
density reaches

δvir = 18π2 ≈ 178 (2.31)

This number is important for defining a bound object inN -body simulations. Typically
an overdensity of δvir = 200 is assumed.

The Halo Mass Function

The two models above suggest that initial overdensities will be amplified by gravi-
tational growth and later build virialised objects called halos. The so-called Press-
Schechter theory provides an analytic formalism for the process of structure formation
once the overdensities have collapsed into a halo. It provides insight into the evolution
of the halo mass function, discussed below, and succeeds in describing the hierarchical
clustering seen in N -body simulations.

The idea of the Press-Schechter theory is that the halos form at peaks of matter
density fluctuations in the early Universe. Those fluctuations are described by spheres
of mass M and the density distribution is assumed to be Gaussian. We therefore
make the assumption that the probability distribution and overdensity of M can be
described by a Gaussian function with zero mean

p(δ) = 1√
2σ(M)

exp
(
− δ2

2σ2 (M)

)
(2.32)

where δ = δρ/ρ is the overdensity associated with M , and σ(M) is the standard devi-
ation. The root mean square overdensity within sphere of radius R is monotonically
decreasing as a function of mass. Large scales therefore correspond to a smaller stan-
dard deviation and hence are smaller in amplitude than those on small scales. This
results in a bottom up picture of structure formation as small structures are believed
to form before large structures. In the Press-Schechter theory we assume the linear
theory of the spherical collapse model is valid until the density reaches the threshold
of δc = 1.69 and then collapses immediately afterwards. This seemingly unphysi-
cal approximation can somehow be justified by the fact that gravitational instability
operates very quickly.

At any given time, all regions that have a density over δc are believed to collapse
and form halos. The fraction of a sphere of radius R that exceeds a threshold at a
given time t is given by

f(δ > δc) = 1
2erfc

(
δc√

2σ(R)

)
(2.33)
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with
erfc(x) = 2√

π

∫ ∞
x

exp
(
−x2) dx . (2.34)

1 If we mistakenly assume that this fraction can be identified with the fraction of
particles which are part of collapsed lumps with masses greater than M then we
run into a problem. For small masses M the mean square function goes to infinity
and therefore the fraction of points f converges to 1/2. Hence the formula above
predicts that only half of the particles are part of lumps of any mass. In other words,
the negative part of the Gaussian distribution has been left out as it corresponds to
underdense regions. The so-called “swindle” in the Press-Schechter approach is to
multiply the mass fraction by an arbitrary factor of 2.

The fraction of mass that is in halos between mass M and M + dM is given by
df/dM . The number density of collapsed lumps is the number density of all halos
ρ0/M times the fraction of mass in halos in the range M →M + dM

dn(M, t)
dM

= −2 ∗ ρ0

M

∂f

∂R

dR

dM
(2.35)

= −2
√

2
π

ρ0

M

δc(t)
σ2 exp

(
−δ

2
c (t)
2σ2

)
where δc(t) = δc/D(t) is the critical overdensity linearly extrapolated to the present
time. The normal procedure to find the number density is to calculate σ and its
derivative from the linear theory matter power spectrum.

The Press-Schechter formula for dn/dM agrees remarkably well with N -body sim-
ulations, despite some of the unphysical assumptions made above. The formula is
known to deviate in detail at both high and low mass ends as it tends to systemati-
cally under predict large-mass halos and over predict small-mass halos. Refinements
to this theory have since been made. In particular, a better fit to the mass function in
N -body simulations has been proposed by Sheth & Tormen (1999) by assuming that
the halos are elliptical instead of spherical. This approach seems to provide a more
accurate fit to some N -body simulations (Reed et al., 2003; Jenkins et al., 2001).

Bond et al. (1991) proposed an alternative approach bases on excursion sets to
statistically estimate how many small halos would be subsumed into larger ones. This
approach reduces the number of small-mass halos compared to Press-Schechter and
increases the number of large-mass halos and is therefore in better agreement with
simulations. Another advantage of this excursion set approach is that it also allows a
characterisation of the merger rate of dark matter halos.

To derive the number density of the halos we consider a spherical region of mass
M2 with a linear overdensity δc/D(t2) which forms a collapsed object at time t2. The
fraction of halos in collapsed objects of a certain mass at an earlier time t1 < t2 is

1The complimentary error function erfc(a/σ
√

2) is the probability that the error of a measurement
drawn from a standard Gaussian distribution lies outside the region −a to a.
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given by

f (S1, D1|S2, D2) dS1 = 1√
2π

δ1 − δ2
(S1 − S2)3/2 exp

[
− (δ1 − δ2)2

2 (S1 − S2)

]
dS1 , (2.36)

where S1 = σ2 (M1), S2 = σ2 (M2), δ1 = δc/D(t1), and δ2 = δc/D(t2).

Halo Structure

Within the framework of the cold dark matter cosmology, dark matter halos are pre-
dicted to have triaxial shapes (Barnes & Efstathiou, 1987; Frenk et al., 1988; Dubinski
& Carlberg, 1991; Warren et al., 1992; Cole & Lacey, 1996; Thomas et al., 1998; Jing
& Suto, 2002). Simulations have revealed that prolate haloes form via mergers with
low angular momentum where oblate halos form via mergers with high angular mo-
mentum. N -body simulations have shown that the final haloes formed via mergers
with varying amounts of angular momentum leading to haloes with arbitrary triaxial-
ity where the triaxiality also varies with radius (Moore et al., 2001; Vitvitska et al.,
2002). Numerical experiments of isolated equilibrium models are thought to be very
useful for studying the evolution of self-gravitating systems in a controlled way.

Many techniques exist to construct N -body realisations of spherical haloes and mul-
ticomponent galaxies (Hernquist, 1993; Kazantzidis et al., 2004b), but it is more com-
plicated to build triaxial equilibria models. Triaxiality can generally arise from a
number of ways. A popular way to construct a numerical model of triaxial galaxies is
by the study of merger simulations. There are a number of examples throughout the
literature which include binary mergers of spherical halos (e.g., White, 1978; Fulton
& Barnes, 2001) as well as disk galaxies (e.g., Gerhard, 1981; Barnes, 1992; Barnes &
Hernquist, 1996; Naab & Burkert, 2003; Kazantzidis et al., 2004a). Multiple mergers
of systems have also been studied (e.g., Weil & Hernquist, 1996; Dubinski, 1998). A
major result of their studies is that the structure of the merger remnant of two com-
ponent models sensitively depend on the orbital geometry (Naab & Burkert, 2003) as
well as the inclination and internal properties of the disks (Kazantzidis et al., 2004a).
Merritt & Fridman (1996) constructed a fully self-consistent model of triaxial galaxies
with central density cusps. They used a triaxial generalisation of Dehnen’s spherical
mass models which had densities that vary as r−γ near the center and r−4 at large
radii. Their attempts to construct self-consistent solutions using the regular orbits
failed for both mass models with γ = 1 (“weak cusp”) and γ = 2 (“strong cusp”).
Instead they constructed quasi-equilibrium solutions that include stochastic orbits. A
general technique for constructing such cuspy axisymmetric and triaxial N -body halos
would however be preferable. Based on the way in which structures form in hierar-
chical cosmological simulations Moore et al. (2004) explored the generation of triaxial
structures. They demonstrated that major mergers between two isolated equilibrium
spherical cuspy haloes form similarly cuspy triaxial merger remnants where higher
angular-momentum mergers produce systems with lower concentrations. They found
that radial mergers produce prolate systems, while mergers on circular orbits produce
oblate systems. This method presents a way to construct cuspy axisymmetric and
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triaxial N -body haloes. It specially has the benefit that it is based on the observations
of how haloes are formed in cosmological N -body simulations.

Cosmological N -body studies (Navarro et al., 2004; Merritt et al., 2005; Prada et al.,
2006) showed that density profiles of dark matter halos have an approximately uni-
versal form which is better described by the Einasto profile (Einasto, 1965) than the
Navarro-Frenk-White (NFW) profile (Navarro et al., 1996, 1997). The Einasto density
profile is given by

ρ(r) = ρ−2 exp
(
− 2
α

[(
r

r−2

)α
− 1
])

(2.37)

where r−2 is a characteristic radius at which the logarithmic slope of the density profile
equals -2 and α is a parameter which controls how rapidly the logarithmic slope varies
with the radius. The NFW density profile is given by

ρ(r) = ρs

(r/rs) (1 + r/rs)2 (2.38)

where ρs is the characteristic inner density and rs is the scale radius. They are tightly
correlated with the halo virial parameters, via the concentration, c = rvir/rs, and the
virial overdensity δvir. The NFW corresponds to a cummulative mass distribution
that diverges when r →∞. The profile has a simpler form and is still good to within
10-20% when defining an exponential cut-off for r > rvir which sets in at the virial
radius and turns off the profile on a scale rdecay which is a free parameter and controls
the sharpness of the transition

ρ(r) = ρs
c(1 + c)2

(
r

rvir

)ε
exp

[
−r − rvir

rdecay

]
(2.39)

The concentration c was found to depend weakly on halo mass and on redshift and
can be predicted from the formation history of a halo (Wechsler et al., 2002). Simple
algorithms to approximately determine concentrations have been proposed by various
authors (Navarro et al., 1997; Eke et al., 2001; Bullock et al., 2001) More accurate
power-law fits have also been proposed by several authors (Prugniel & Simien, 1997;
Gao et al., 2008; Zhao et al., 2009; Stadel et al., 2009).

2.2. Taking Baryons into the Picture

The night sky we see generally consists of electromagnetic radiation emitted by matter
like stars and galaxies. In the previous sections we have only discussed the evolution
and formation of dark matter structures. Gravity alone does not provide a complete
description of the observations made, especially since dark matter does only interact
gravitationally with luminous matter. For the understanding of the processes that
shape galaxies and their evolution it is crucial to introduce baryons into the picture.
In the standard picture of cosmology it is predicted that small halos form before
larger halos evolving hierarchically to form a cosmic web. Intuitively it is assumed
that baryons concentrate towards the potential wells of the dark matter halos and
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that these halos would be the sites of galaxy formation. This standard picture of
hierarchical galaxy formation was introduced by White & Rees (1978) and has since
then been extended. In this picture the baryons fall into the potential wells of the
haloes forming a hot gaseous halo for which the self-gravity of the fluid is balanced by
pressure gradients. The hot gas in this halo is able to cool through cooling mechanisms
involving the physics of the plasma and the atomic structure of its components. The
cooling however reduces the pressure support and causes the accretion of cold gas
from the halo onto a central disc. Stars form as a function of the gas density on a
characteristic time-scale, which results in a rotating stellar disc and stars start to form.
The star formation time-scale is proportional to the local free-fall time. A fraction of
the newly formed stars is short-lived and these stars explode in supernovae which again
feedback heat into the surrounding gas. This can in turn again result in reducing the
efficiency of star formation and in some cases blow gas out of the galaxy in a so-called
galactic wind. These supernovae-driven winds are thought to suppress the formation
of low-gas galaxies. Another potential source of feedback is provided by the accretion
of gas onto a supermassive black hole in the center of the galaxy, called active galactic
nuclei (AGN). All these processes explained above are however not fully understood.
There are still many open questions left to be answered. The baryonic structure of the
galaxies, the processes such as star formation, momentum feedback from supernovae,
and AGNs, just to name a few still, have to be better understood.

Due to the hierarchical nature of the formation of the cosmic web, dark matter
halos constantly accretes new material and merge with other galactic systems. Such
a merger can trigger new star formation and at the same time angular momentum is
transferred to the stars in the disc. In this way galaxy mergers are extremely important
in affecting the morphology of galaxies and shape their properties. An important goal
of galaxy formation is to understand the correlation of the internal properties of a
galaxy with their formation history and environment.

2.2.1. Galaxy Morphology
Nature has provided an immensely varied array of galaxies, ranging from faint, diffuse
dwarf objects to brilliant spiral-shaped giants. These variations result from the way
in which the systems were formed and subsequently evolved. In order to classify these
variations, Edwin Hubble (Hubble, 1926) invented a morphological scheme still often
used today. The Hubble sequence was later expanded by Gerard de Vaucoulerus
and Alland Sandage.

Hubble’s scheme divides the regular galaxies into three main forms:

• Elliptical galaxies: These galaxies have a smooth, featureless light distribution
and appear as ellipses in photographic images. They are classified by the letter
E, followed by an integer n which represents their degree of ellipticity on the sky.
By definition n is ten times the ellipticity of the galaxy, rounded to the nearest
integer. The ellipticity is usually defined as:

e = 1− b

a
(2.40)
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where a, and b represent the major axis, and minor-axis of the ellipsoid, respec-
tively.

• Spiral galaxies: These consist of a disk, hosting a spiral pattern of stars. They
are represented by the symbol S. Roughly half of all spirals are observed to have
a bar-like structure which extends from the central bulge. Such barred spirals are
given the symbol SB. Both types of spiral galaxies can also be further subdivided
according to the detailed appearance of their spiral structures.

• Lenticular galaxies: These consist of a bright central bulge and are similar in
appearance to an elliptical galaxy. In addition they are also surrounded by an
extended, disk-like structure similar to the spiral galaxies. They are given the
symbol S0. In contrast to the spiral galaxies the lenticular galaxies do not show
any spiral structure in their disc.

These three classes can be further extended into finer distinctions, in particular, by
defining a fourth class which contains all of the galaxies that do not show any obvious
regular structure, called irregular galaxies.

The de Vaucouleurs system for classifying galaxies is often used as an extension to
the Hubble sequence and was first described by its name sake Gerard de Vaucouleurs in
1959. To complement Hubble’s scheme, de Vaucouleurs introduced a more elaborate
classification for spiral galaxies based on three main characteristics: Bars, Rings,
and Spiral arms. To fully describe the galaxy, the three elements of the classification
scheme are combined. To assign each galaxy class to the formation time in the history
of the Universe, de Vaucouleurs also introduced numerical values to each class of
galaxy. Early-type galaxies, such as ellipticals and lenticulars, received a negative
number where late types such as spirals and irregulars received a positive number.

2.2.2. Galaxy Interactions
While many galaxies seem to be evolving in isolation there are many indications that
some galaxies are interacting with other galaxies or their environment. Galaxy inter-
actions are also thought to affect the morphology of galaxies and are play an important
role in their evolution.

Galaxy Orbits

As discussed above, the dark matter halos are built hierarchically where the halos
merge with each other to build even larger ones. It is generally found that during the
coarse of various mergers with varying amounts of angular momentum, haloes with
arbitrary triaxiality can be formed where the triaxiality varies with radius (Moore
et al., 2001; Vitvitska et al., 2002). N -body simulations such as (Tormen et al., 1998;
Moore et al., 1999; Klypin et al., 2008) found that halos can persist as subhalos within
larger halos into which they merge. Each subhalo is thought to be the formation site
of a galaxy. Many of the subhalos therefore contain a galaxy which became a satellite
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in the host potential. These subhalos are usually gravitationally bound to their bigger
host halo and as such orbit within it.

Despite the fact that simulations predict triaxial dark matter halos, observations
have found quite round halos. This change can most likely be explained by taking
into account the baryons, where it is thought that the condensation of baryons leads
to rounder halos. Triaxial halos are generally supported by box orbits, which pass
arbitrarily close to the density center. It is assumed that the decrease in triaxiality
caused by the baryons is due to the scattering of these orbits. Debattista et al. (2008)
tested this hypothesis and found that the central condensation of baryons does not
destroy enough box orbits to cause the shape to change. Rather, the box orbits become
rounder along with the global potential. If however angular momentum is transferred
to the halo, either via satellites or via bars, then the irreversible changes in the halo
distribution are substantially larger. This ability of satellites to alter the phase space
distribution of the halo is also of special interest to galaxy formation simulations since
they obviously can affect the properties of any galaxy that it may contain. It is
especially thought to influence the evolution of disks.

Gravitational Interactions

Mergers
Mergers are thought to play an important role in the formation and evolution of a
galaxy. Since orbiting subhalos are gravitationally bound to their host and there-
fore rarely encounter other subhalos at velocities that result in a bound interaction
(Somerville et al., 2008, and reference therein), such interactions require a dissipative
process to reduce the orbital energy of the galaxies. Dynamical friction is, for ex-
ample, such a process. It causes the galaxy to loose energy and drags the subhalos
down towards the center of the host halo where they in turn might merge with other
subhalos.

Over the last few years the effect of mergers on galaxies has been intensely studied.
In particular, the question whether elliptical galaxies have formed from mergers, first
proposed by Toomre & Toomre (1972), has been widely tested with simulations. El-
liptical galaxies can be divided into objects with boxy and disky isophotal shapes. A
wide variety of N -body simulations have shown that merger remnants mimic impor-
tant features of elliptical galaxies such as photometric and global kinematic properties,
kinematic misalignments, or kinematically decoupled cores (Barnes, 1992; Hernquist,
1992, 1993; Naab et al., 2006b; Burkert & Naab, 2004). Several authors studied the
orbital content of simulated merger¡ remnants. One of the main results was that the
centre of the remnants is dominated by box orbits whereas minor-axis tubes domi-
nate at larger radii. Jesseit et al. (2005) performed a large number of collisionless
simulations and analysed the orbital content of the merger remnants. In their work
they found that the number of minor axis tubes increases with increasing mass ratio.
This indicates that in unequal mass mergers it is more difficult to destroy the orbit
population of progenitor discs. At the same time they found that the boxlet and box
orbit fractions decrease with increasing mass ratio. They also show that for identical
merger symmetries but with larger pericentral distance, the minor axis tubes are pop-
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ulated more strongly than for the close encounter sample. This confirms the studies
of Barnes & Hernquist (1996) where they claimed that a central mass concentration
destroys the box orbits. Additionally they confirm the work of Barnes & Hernquist
(1992) claiming that different orbit classes dominate at different radii inside the merger
remnants. They also demonstrate that different disc inclinations generally lead to dif-
ferent orbital structures while pericentre distance and mass ratio are identical. They,
however, do not make a quantitative assumption of which disc inclination causes more
boxy galaxies.

It is of no surprise that the presence of gas in mergers has a significant impact on the
orbital structure. Gas generally is assumed to destroy the box orbits at the centre of the
galaxies and minor axis tubes become more populated. Naab et al. (2006b) presented
simulations of a large set of mergers of early type disc galaxies inclined by 30 degrees
with different mass ratios. They found out that in contrast to the collisionless case,
equal mass mergers with gas do not result in very boxy remnants. This is caused
by the suppression of box orbits and the change of the projected shape of minor-axis
tube orbits in the more axisymmetric remnants. This stands in agreement with the
results of Moore et al. (2004) where they studied the change of the halo structure
in presence of baryons. Naab et al. (2006b) found that generally major mergers are
slowly rotating, whereas minor mergers with a mass ratio of 3:1 are fast rotating and
discy. They have also shown that after the galaxies have merged between 40% and
85% of 1:1 merger of the gas has accumulated at the centre.

The intrinsic shape of a triaxial mass distribution is defined by the ratio of its three
principal axes. The principal axes are determined by diagonalising the moment of
inertia tensor of the galaxy. The triaxiality parameter is defined as

T = a2 − b2

a2 − c2
(2.41)

where a,b, and c are the long-, intermediate- and minor axis, respectively. Jesseit et al.
(2005) found out that the shape of merger remnants is closely related to their intrinsic
orbital structure. Looking at pure collisionless mergers they found that the peak of
the box orbit abundance is located at T = 0.5. They also found that the minor axis
tube fraction rises strongly with decreasing T to 60% for oblate shapes (T = 0) and
drops to values as low as 20% for very prolate shapes (T = 1). When taking the
gas into account Naab et al. (2006b) found that the presence of gas influences the
intrinsic shape of the stellar components of the merger remnants. They found that the
triaxiality is lowered for almost every remnant due to the influence of gas. Although
the triaxiality of their major merger remnants is also lowered substantially the effect is
smaller than that for 3:1 remnants. Comparisons of the population of each orbit class
averaged over all 1:1 and 3:1 mergers respectively for all merger remnants with and
without gas they showed that gas drastically reduces the fraction of box orbits while
the fraction of minor axis tubes increases by a factor of two to three. When comparing
the orbits with the intrinsic shape of the remnants they found that, generally, box
orbits appear to be box shaped with the exception of the projection along the major
axis where we look edge on and the box orbits do not extend much. This suggests one
should study of the viewing angle and the intrinsic shape of the galaxy. Franx (1988)
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suggested that whether or not the isophotal shape appears discy or boxy depends not
only on the intrinsic structure of the galaxy but also on the viewing angle. This was
confirmed in simulations of collisionless disc-disc mergers by Heyl et al. (1994). Naab
et al. (2006b) also studied the influence of the viewing angle and examined only the
projections along the principal axes of the merger remnants. They claimed that this
would result in the most extreme values of the boxiness of all possible projections.
The boxiness is usually measured by approximating the isophotes of the galaxy with
a Fourier series

I(θ) = I0 +
∞∑
n=1

(An cos (nθ) +Bn sin (nθ) . (2.42)

where θ is the azimuthal angle and I0 is the average intenisty over the ellipse. The A4
coefficient to the cos 4θ component is used to quantify the isophotal deviation from
an ellipse. It is positive (negative) when the isophotes are discy (boxy). Naab et al.
(2006b) found that the projection along the major axis is the most sensitive to the
orbital content of the merger remnants. Remnants with negative a4 were found to
have indeed a dominant box orbit population while the most discy remnants were
dominated by minor axis tubes. In their study they found that the projection along
the intermediate axis is the most complicated one. Where almost none of the remnants
could be identified as boxy. Finally the projection along the short axis is found to be
more sensitive to the orbital content. Building on the work of Jesseit et al. (2005) and
Naab et al. (2006b), Hoffman et al. (2010) simulated seven different major disk mergers
at seven different initial gas fractions ranging from 0% to 40% including radiative
heating and cooling, star formation, and feedback from supernovae and active galactic
nuclei. They show that equal mass mergers of such disk galaxies can in the presence of
15%-20% gas, generate early-type slowly rotating galaxies with kinematically distinct
cores. They also noted that as the gas fraction increases, the box orbits within 1.5 Re,
where Re is the half light radius, get increasingly replaced by sharp embedded disks.
They however have also shown that the outer parts of the remnants (outside ∼ 1.5Re)
are less relaxed than the inner parts, and are therefore largely unaffected by the gas
content of the disks. This suggests that if boxy orbits exist at large radii they are not
affected.

Tidal Destruction
When a subhalo is orbiting in a bigger host halo its galaxy will experience tidal forces.
This strips away the outer regions or, in extreme cases, results in the entire disruption
of the subhalo, creating a stellar stream. The removing of the galaxy’s gas prevents
any new star formation. The external tidal perturbations are strongest during the
subhalo’s pericenter passages. It is found that particles in an orbiting satellite that
are on prograde orbits are more easily stripped than those on radial orbits which
are in turn more easily stripped than those on retrograde orbits (Read et al., 2006).
The tidal perturbations can also trigger a disk instability which generates a bar-like
component while kinematically heating many stars out of the disk plane. The disk
therefore undergoes different morphological stages. The disk, and then the bar, puff
out and partially evaporate which in turn lowers the average stellar density and can
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result in the galaxy looking somewhat rectangular (Mayer et al., 2007;  Lokas et al.,
2010).

Harassement
When tidal forces are not strong enough to eventually strip material from the galaxy
one generally talks about harassment. The harassment process works via so called
tidal shocking where the stars in a galaxy experience a rapidly changing tidal field
along its orbit. Harassment has been used to explain the presence of some dwarf
spheroidal galaxies within galaxy clusters Moore et al. (1996b, 1998, 1999). Through
this process, close encounters can result in pure disk galaxies which causes the galaxy
to develop a strong stellar bar (e.g., Noguchi, 1988; Gerin et al., 1990). This stellar bar
remains intact while the remaining outer disk can get stripped away by various high-
speed encounters with other galaxies. Even though less strong, the rapidly changing
tidal forces can transfer energy from the orbit to internal motions of stars in the
galaxy which can eventually heat the galaxy. As a result of such a heating, the galaxy
expands and starts to destroy cold, ordered structures (Moore et al., 1996a, 1998;
Mayer et al., 2001a,b; Gnedin, 2003). Such a destroying of the ordered structures can,
in the presence of a triaxial potential, lead to boxy galaxies (Naab et al., 2006a).

Hydrodynamical Interactions
Dark matter is only affected by gravity because of its small interaction cross section.
The baryonic content however can be strongly affected by hydrodynamical forces such
as pressure, and temperature. The orbital motion of a subhalo through the hot atmo-
sphere of a host halo leads to a large ram pressure. The characteristic magnitude of
this pressure is defined as

pram = ρhostV
2
orbit . (2.43)

This pressure can exceed the binding energy of the hot gas in the subhalos as well
as the interstellar medium (ISM) gas in the galaxies. The ram pressure can therefore
remove the hot atmospheres of satellite galaxies. The first quantification of this process
was made by Gunn & Gott (1972). In their work they showed that the ram pressure
force indeed can remove material from a galactic disk if it exceeded the gravitational
restoring force.

In many cases this mass loss caused by the ram pressure can be further enhanced
by similar effects such as turbulent viscous stripping (Nulsen, 1982).
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3. Computational Techniques

Historically, the study of galaxy formation was based on nothing more than direct
observation. Unlike other fields of physics it is difficult to perform experiments that
test astrophysical theories.

While observations are still necessary to compare with predictions and provide sci-
entists with new experimental discoveries, computers have allowed theorists to perform
numerical experiments in order to better understand the processes which govern galaxy
formation. The timescale of structure formation in general and galaxy formation in
particular is so high that any theories and predictions have to be tested with simu-
lations. Not only this, but the complexity of the different processes and phenomenas
also motivates the need for simulations.

Gravity is the dominant force that drives structure formation at all scales, ranging
from galaxy clusters to stars and planets. Unless an accurate description of the very
early Universe, or near massive black holes is needed, gravity can be well described by
Newtonian theory. Calculating the gravitational forces of systems with many bodies
and evolving the motion of the bodies involved in the interaction is computational chal-
lenging. Specially, large scale structures and the study of halo formation are largely
determined by the dynamics of cold dark matter which is, to first order, described by
so-called pure N -body simulations. The process of galaxy formation, however, as well
as many other processes, such as star and planet formation, involves a wide range of
baryonic processes where pure N -body simulations would not be sufficient to describe
observation. Numerical methods have to be developed that solve the wide range of
physical processes such as hydrodynamical phenomena, production of relativistic par-
ticles, magnetic fields, and stellar feedback mechanisms, to name a few. When the
collisional component is included in the simulations, the complexity of the problem
obviously increases as does the computational time needed. A consequence of this
complexity is that cosmological hydrodynamical simulations usually do not reach the
same spatial resolution as pure N -body runs.

There are two major approaches that have been developed: 1) N -body simulations
that attempt to directly and numerically solve the full non-linear equations involved
in galaxy formation and 2) semi-analytic models that attempt to construct a full set
of analytic approximations which describe the same physics. So far, such a full set
of equations has not (yet) been developed and proves to be challenging given the
huge range of physics involved in the galaxy formation process. It is important for
the two approaches to work together as they both provide a test case for each other.
Approaches to combine the advantages of N -body simulations such as high resolution
and numerical treatment of gas physics with semi-analytic models have also been shown
(Moster et al., 2011).
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3.1. COLLISIONLESS N-BODY SYSTEMS

3.1. Collisionless N -body systems

As explained above, simulating cold dark matter (CDM) is important for the under-
standing of the formation of structures in our Universe. The CDM is thought to be
a collisionless particle that interacts only through gravity. It can be described as a
smooth fluid by the smooth differentiable distribution function f(x, ẋ, t) which obeys
the collisionless Boltzmann equation:

df

dt
= ∂f

∂t
+ ẋ∂f

∂x −∇φ
∂f

∂v = 0 (3.1)

Observables are extracted from f by taking moments of the Boltzmann equation.
We therefore get for the density and the gravitational potential:

ρ =
∫
fd3v (3.2)

φ = −G
∫
d3x ρ (x′)
|x− x′| (3.3)

One runs quickly into fundamental problems if equation 3.1 would be attempted
to be solved directly1 in addition to the problem being six dimensional and therefore
computational hard. It nevertheless has been recently tried and some low resolution
simulations have been successfully run (?).

If, however, the distribution function f is not completely accurately solved but rather
approximated by a discrete set of N points such problems disappear. Such points are
advanced by the equations of motion ẍ = −∇φ, where the gravitational potential φ
is the solution of the Poisson equation ∆xφ = 4πGρ. In this method, the particles
do not represent physical self-gravitating bodies. They are a discrete sampling of the
smooth distribution function f which move with the flow according to the equations
of motion.

Many N -body numerical techniques have been developed to compute this evolution,
some of which approximate distant forces to reduce the N2 problem into a more
manageable form. Such methods that can be used for the calculation of the force
include:

• Direct summation: The direct summation method calculates the gravitational
field exactly. It attempts to solve the equations 3.2 and 3.2 with a N2 summa-
tion over all the particles. While doing so it is important to use an appropriate
force softening to avoid the singularity of sample points occupying the same
spatial position. The importance of a correct softening is discussed in Dehnen
(2001) and references therein. In general, it is important to use a force softening
which converges to the right results. This force softening is also important for
the methods explained below. The direct summation method is obviously very

1winding problem
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3.1. COLLISIONLESS N-BODY SYSTEMS

slow and usually not qualified for large simulations. It is therefore wise to ap-
proximate the force calculations provided the force errors are random and small
enough. Since the force field is often noisy anyway, small random errors will not
significantly reduce the relaxation time of the system.

• Particle-Mesh (PM) method: The key idea of this method is that Poisson’s
equation can be solved in real-space by a convolution of the density field with a
Green’s function:

φ(x) =
∫
g (x− x′) ρ (x) dx′ (3.4)

In Fourier-space, the convolution becomes a simple multiplication:

φ̂ (k) = ĝ (k) · ρ̂ (k) (3.5)

The only remaining unknown ρ̂ (k) can be found by using the Fast Fourier
Transforms. The potential can be solved with the following steps:

– Fourier transform the density field forward with FFT
– Multiply it with the Green’s function
– FFT backwards to obtain the potential

There are some additional complications in how the particles are initially mapped
onto the grid cells and how the forces are mapped on to the particles. A more
detailed description of this technique is found in Binney & Tremaine (2008).
Using these mapping techniques a PM algorithm usually consists of the following
four main steps:

1. Mapping the mass density ρ on the mesh
2. Compute the potential described above
3. Compute the force field on the mesh
4. Mapping the forces to the particles

A big advantage of this method is its speed and simplicity. The most complicated
step, the FFT, can be computed in O(N logN) time. There are however also
some problems. If a fixed grid is used the spacial resolution is limited by the grid
size. High density regions are therefore poorly resolved resulting in inaccurate
force calculations. Because of this problem adaptive meshes are often employed
rather than a fixed grid to put resolution only where it is needed (Teyssier, 2002).
Another disadvantage of the fixed grid is that the force errors are unevenly
distributed on the scale of the cell size. Because of this, it is, for example,
difficult to perform simulations on large cosmological scales which still resolve
internal structures of halos.

• Tree method: Another idea is to expand the potential into it’s multipole mo-
ments and solve those equations. In practice this is often combined with a tree
technique. The tree technique partitions the mass distribution into a recursive
structure where at the root of the tree contains all of the particles. This is then
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3.2. COLLISIONAL SYSTEMS

subdivided into cells, or branches, of the tree which are again subdivided until
one arrives at one particle per cell, called leaves of the tree. In this way each
node of the tree provides a full description of the matter within some spatial
volume. The tree can be built by dividing the space in different ways. When
computing forces, distant particles are generally mapped into a large group of
cells whereas the force for close particles might be calculated with a direct sum-
mation technique depending on a particular acceptance criteria. The forces on
the bodies is then computed during a single recursive scan of the entire tree. This
method requires O(N logN) operations per force calculations and gives therefore
a significant improvement to the direct summation method. Another advantage
is that the tree algorithm has no intrinsic restriction for its dynamical range. It
also gives no restriction on the geometry, which allows arbitrary configurations
to be calculated. The force accuracy however largely depends on the level of the
multipole expansion and therefore presents only an approximation of the true
force.

• Hybrid methods: A modification to the PM scheme is the Particle-Particle
PM schemes (P3M). The idea behind this scheme is to supplement the particle-
mesh scheme with a direct summation short-range force at the scale of the mesh
cells. This offers a solution to the problem with the PM scheme on small scales
and therefore allows higher dynamical range simulations. With those methods,
problems generally appear in highly clustered regions where the simulations sig-
nificantly slow down. Another modification is the TreePM force calculation
algorithm where the potential of a single particle is split in Fourier space into
a long-range and a short-range part, which are computed separately with the
particle-mesh and tree algorithms, respectively. With this approach the tree is
only walked locally. An important advantage of this method is the accurate and
fast long-range force and that, in contrary to tree algorithms, the computational
speed is insensitive to clustering as it is calculated with a different method.

3.2. Collisional systems

Although gravity is the important force in the Universe it is crucial to introduce the
baryons in the simulations especially for studying galaxy formation and evolution pro-
cesses. As previously discussed, the baryons introduce important properties such as
feedback mechanisms, cooling, and heating, which are thought to influence the distri-
bution of the baryons in galaxies. The baryons are usually treated as an astrophysical
inviscid fluid and are therefore coupled to cold dark matter by the Poisson equation.
Such a fluid is described by the Euler equations which in the absence of sinks or sources
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3.2. COLLISIONAL SYSTEMS

can be written in their conservative Lagrangian form:
∂ρ

∂t
+∇ · (ρu) = 0 (3.6)

∂

∂t
(ρu) +∇ · (ρu× u) +∇p = −ρ∇φ

∂

∂t
(ρe) +∇ · [(ρe+ P )u]

where ρ, v, and u are the mass density, velocity and internal energy per unit mass of
the flow, respectively. The equations are closed by the ideal gas equation of state:

p = (γ − 1) ρ
(
e− 1

2u
2
)

(3.7)

where γ is the adiabatic index. The gravitational potential is added to the momentum
equation 3.6 to couple the baryons with the dark matter.

In astrophysics, a huge range of fundamentally different numerical methods for hy-
drodynamical simulations are used but they can be mostly divided into three funda-
mental methods.

• Grid-based Methods: In the Grid-based, or Eulerian, methods the Euler equa-
tions 3.6 are numerically evolved on a discrete spacial mesh, where the differen-
tial operator is calculated using a second order finite difference approximation.
The fluid quantities are advected across the grid. To capture the large density
ranges often found in galaxy formation simulations or around shocks, an adaptive
method is used which recursively refines high density cells (Teyssier, 2002).

• SPH: Smoothed Particle Hydrodynamics (SPH) was first introduced as a tool
for studying stellar structure (Gingold & Monaghan, 1977; Lucy, 1977). The
SPH code is a mesh-free Lagrangian particle method where the fluid elements,
such as density and pressure, are traced by particles. It is a Lagrangian scheme
as the geometry of the flow is closely followed by the particles. An average of
a particular quantity such as mass, energy, pressure, or density is calculated by
considering the local neighborhood within a smoothing length of each particle.
Mathematically this is done by a kernel function where some fluid quantity A(x)
is expressed as

A(x) =
∫
d3x′A′(x′)δ (|x− x′|) (3.8)

≈
∫
d3x′A′(x′)W (|x− x′|)

where W is a positive definite smoothing kernel, and h is called the smoothing
length. For the approximation to be valid the kernel obviously must satisfy∫

Wd3x′ = 1 (3.9)

lim
h→0

→ δ
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A good description of the kernel function and its advantage and disadvantage is
given by (Dehnen, 2001). A huge advantage of SPH is that it is closely related
to N -body codes since both are particles based. While both codes consider long
range gravity forces, a fluid also has a pressure and viscosity which has to be
considered in an SPH code. SPH codes provide accurate results for problems
involving strong shocks and complex geometries. In addition the computational
time is significantly reduced in low density regions which allows more computa-
tional time available for high density regions. Furthermore, SPH deals with free
boundaries more easily than grid based codes.

• Moving-Mesh Techniques: Recently, a published, but non-public code, AREPO
has been presented (Springel, 2010). This code tries to retain the accuracy of
mesh-based hydrodynamical methods while at the same time using the advan-
tages of the Galilean-invariance and geometric flexibility of the SPH codes. The
principal idea for achieving such a convergence is by allowing the mesh itself to
move. See Springel (2011) for further detail.

A number of comparison tests for the different codes have been performed in the last
few years (Agertz et al., 2007; Khokhlov, 1998; Scannapieco, 2013). It has been shown
that both SPH and AMR suffer problems that make them less accurate in certain
regimes. In fact, those methods sometimes even yield conflicting results (Agertz et al.,
2007). SPH codes have relatively poor shock resolution compared to AMR codes,
while AMR codes suffer from problems due to their inherent non-Galilean-invariance
and numerical diffusion. Comparisons between AREPO and SPH codes have also been
made extensively in the last few years (Kereš et al., 2012, and references therein).

It is important to note that since the test of Agertz et al. (2007) improvements in the
SPH methods have been made to stress the problems shown in the tests made in this
paper (Read & Hayfield, 2012). If subgrid physics such as feedback mechanisms are
involved even more discrepancy can appear (Scannapieco et al., 2012). Subgrid physics,
however, is an important topic itself where a lot of discussions and improvements still
have to be made. Current effort is focused on implementing more realistic subgrid
models, while future computing power will also help in resolving important physics
used to calibrate and test the various subgrid models.

3.2.1. RAMSES
RAMSES is a N -body and hydrodynamical code that is used for the simulations
presented in this thesis. The code uses a grid with adaptive mesh refinement and
the data structure is based on a tree which allows to calculate the forces and the grid
refinements in one recursive scan. Up until now two time-stepping techniques have been
implemented: a single time step scheme and an adaptive time step scheme. The code
is able to simultaneously follow a collisionless fluid which is gravitationally coupled
with an inviscid fluid. The N -body solver is mainly based on the ART code (Kravtsov
et al., 1997) with some variations in the implementation. The basic computation
follows the four main steps for the PM-technique described above. An adaptive mesh,
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however, makes the problem more complicated to keep track of. In RAMSES, the
Euler equations are solved in their conservative forms which has the advantage that
energy is perfectly conserved and therefore the flow is not altered by some energy sinks.
The hydrodynamical solver is a second-order Godunov scheme made for perfect gases.
The collisionless and collisional fluids are coupled by considering the total density field
when solving the Poisson equation to compute the gravitational potential and the force
field.

The RAMSES code has been extensively tested under various conditions (e.g.,
Dubois & Teyssier, 2008a; Dubois et al., 2012). It has proven to be extremely suitable
to study problems related to galaxy formation and their dynamics as both collisionless
and collisional fluids have to be taken into account. Many additional physical pro-
cesses such as heating and cooling, feedback mechanisms, magneto hydrodynamics,
and AGN have been implemented in the code (Dubois & Teyssier, 2008b). The cool-
ing function introduced by Sutherland & Dopita (1993) is implemented and also used
for the simulations shown in this thesis. The functions implemented cover a wide grid
of temperature and metallicities using published atomic data and processes. Various
feedback mechanisms have been implemented into RAMSES over the last few years
(Dubois & Teyssier, 2008c; Agertz et al., 2007; Teyssier et al., 2013). The feedback
mechanism used by Dubois & Teyssier (2008c) accounts for star formation, supernova
thermal feedback, and supernova kinetic feedback. The star formation feedback is cal-
ibrated to the observed star formation rate in local galaxies. The supernova thermal
feedback is accounted for by using a polytropic equation of state, where it is assumed
that a quasi-equilibrium thermal state is quickly reached after the interstellar medium
(ISM) is disturbed by small scale effects such as turbulence, thermal instability and
other effects. In this case, it can be assumed that the average temperature is a function
of the mass density alone. The supernova kinetic feedback is accounted for by adding
a spherical blast wave solution to each flow variable (density, momentum, and total
energy). By doing so, the kinetic energy is injected into the disc which results in a
turbulent gaseous disc and often in a large scale outflow.
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4. Observations

Nature has provided an immensely varied array of galaxies differing from one another
in shape. They range from faint diffuse dwarf objects to brilliant spiral-shaped gi-
ants. These variations result from the way in which the systems were formed and
subsequently evolved. The majority of the bright galaxies can be divided into three
general classes: ellipticals, spirals, and irregulars. A significant number of galaxies
look ellispsoidal where most of the rest are highly irregular assemblages of luminous
matter.

In March 2012, a discovery of a rare, rectangular-shaped galaxy was reported (Gra-
ham et al., 2012). LEDA 074886 was detected in a wide field-of-view image taken
with the Japanese Subaru Telescope (Miyazaki et al., 2002) for a different project.
This image was later provided to us for the purpose of testing the program written
to analyse the simulated galaxies. While working with the image another remark-
ably rectangular-shaped galaxy was found. Throughout this thesis this galaxy is now
named BM2 (Bieri-Martizzi and Ben Moore Galaxy). A 120×120 i-band picture of
LEDA 074886 is seen in 4.2, and a 50×50 i-band picture of BM2 is seen in 4.3.

Both galaxies lie within a group of 250 galaxies more than 70 million light years away.
The positions of the two galaxies is shown in figure 4.1. It can be seen that LEDA (α =
03h40m43.3y, δ = −18d38m43s) and BM2 (α = 03h41m18.2s, δ = −18d39m39.6s)
both reside within the hot gas halo of the massive, spherical galaxy NGC 1407 (E0),
with a projected separation of ∼ 50 kpc, and ∼ 100 kpc from the giant galaxies core.

4.1. LEDA 074886

As easily seen in picture 4.2, LEDA 074886 has a unusual rectangular shape. In figure
4.2 a surface brightness profile with histrogrammic light binning is shown. For the
galaxy to be seen, the bright light of the NGC 1407 had to be subtracted by modelling
background gradient of halo light.

The resultant light profile for LEDA 074886 is shown in figure 4.4. It can be seen
that the galaxy is not a single one-component galaxy and therefore cannot be described
by a single-component Sersic model. It is also shown that the inner disk component is
well described with a Sersic R1/n model. Since, however, the disk in the center of the
galaxy is slightly inclined and, given the tendency for dust to be usually concentrated
in the center for at least large-scale galaxies, it is not surprising that the Sersic index
is ∼ 0.4 and therefore less than 1. The outer part of the galaxy is found to be well
described with an n = 1 Sersic profile. In the discovery paper, the ELLIPSE task
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4.1. LEDA 074886

Figure 4.1.: The giant massive galaxy seen in the picture is the spherical galaxy NGC
1407 (E0). The projected separation between the giant galaxy and LEDA
(green) is shown to be around 50 kpc. The projected separation between
the host galaxy and BM2 (pink) is around 100 kpc.

Figure 4.2.: A 120×120 arcsecond (∼12×12 kpc) i-band image of LEDA 074886. North
is up and East is left. NGC 1407 is located ∼50 kpc to the NW.
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4.1. LEDA 074886

Figure 4.3.: A 50×50 arcsecond (∼5×5 kpc) i-band image of BM2. North is up and
East is left. NGC 1407 is located ∼100 kpc to the NW.

was used to approximate the isophotes using a Fourier series approach similar to the
method used by the program BELLE. In this technique the isophotes found in the
galaxy are approximated with a Fourier series

I (θ) = I0 +
∞∑
n=1

(An cosnθ +Bn sinnθ) (4.1)

where θ is the azimuthal angle and I0 is the average intensity over the ellipse. The A4
coefficient to the cos 4θ Fourier component is used to quantify the isophotal deviation
from an ellipse. It is positive (negative) when the isophotes are discy (boxy). In this
paper they ’normalised’ the A4 coefficient to the cos 4θ Fourier component by the semi-
major axis length a to give A4/a. It is not quiet understood why they write about
normalisation since A4/a clearly does not give a dimensionless number as the variable
A4 must be in units of luminosity and a is in units of length. The parameter A4/I0
however is a unitless number. It has been used in the analysis of the boxiness of the
simulations presented in this thesis as well as the observations since it appears to be
a more natural choice. The authors find that the inner disk in LEDA 074886 has a
peak ellipticity of 0.65 and isophotes with A4/a peaking at +0.022 at 3.5” (see figure
4.4). Beyond the inner disk around 8” the A4/a term becomes increasingly negative
and therefore boxy. The boxiness parameter reaches values of -0.05 by 30” and -0.08
by 53” at which point the galaxy light appears to truncate rapidly.

The Observations with the giant Keck Telescope in Hawaii, revealed a rapidly spin-
ning, thin disc which reaches a rotation velocity of 33±10 km s−1 by a radius of ∼5
arcseconds.
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4.1. LEDA 074886

Figure 4.4.: Major-axis, i’-band light profile for LEDDA 074886 fit with a Sersic
model (ninner = 0.4, Re, inner = 5.8′′, µe, inner = 21.4 mag arcsec−2) for
the inner embedded disk, plus an exponential model for the outer host
galaxy (houter = 6.7′′ µ0, outer = 20.4 mag arcsec−2 → Re, outer = 11.2′′,
µe, outer = 22.2 mag arcsec−2. An additional nuclear component is present,
but has been excluded from the fit over the inner 2′′. The residuals ∆
about the fit are shown in the second panel. The g′− i′ colour, A4/a box-
iness parameter, and ellipticity are shown in the subsequent panels. The
scale is such that 10′′ = 1.01 kpc, which is roughly the galaxy’s major-axis
half light radius.

Despite the obvious boxiness of the galaxy it has been challenging to quantify the
unlikely nature of the rectangular shape of the emerald cut galaxy. There has however
not been many large quantitative studies on the boxiness of galaxy isophotes. In
the literature (Liu et al., 2008) the boxiness parameter generally was observed to be
confined to > −0.02. Possibly the largest study found looking at the distribution of
a4/a

1 parameters is the analysis from Hao et al. (2006) of 847 luminous early type
galaxies, in which the bulk have a4/a > -0.01 with just 2.2% of the sample having
−0.02 < a4/a < −0.01. It has to be noted that a single boxiness parameter such as
a4/a can be somewhat limited as sometimes the boxiness parameter can show a radial
change. This can lead to a misidentification of extremely boxy galaxies if only their
outer or inner isophotes are boxy, which is the case with LEDA 074886. In figure
4.5 the location of LEDA 074886’s outer isophotes in the ellipticity-a4/a diagram

1The a4/a is the intensity-weighted mean value across a galaxy, typically measured from 2 seeing
radii to 1.5 half-light radii.
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4.1. LEDA 074886

and the absolute magnitude-a4/a diagram is shown. The values for the Virgo cluster
galaxies are roughly the median values from 1.41 to 2.82 Re, rather than the average
value within 1.5 Re. In further work the authors attempt to acquire deeper images
of the more boxy Virgo galaxies, and determine how their A4/a profiles behave with
increasing radius. The authors also listed all found squarish galaxies they could find

Figure 4.5.: The rare nature of LEDA 074886’s rectangular-shape can be seen by con-
trasting its location, denoted by the cross, with that of Virgo cluster early-
type galaxies in the ellipticity - (a4/a) and magnitude - (a4/a) diagram.
The 475 Virgo cluster galaxies (lower panel) are described in Janz & Lisker
(2008). For comparison with similarly bright galaxies, the upper panel
shows the 166 Virgo cluster galaxies with −19 < Mr < −16 mag. Note:
The R-band magnitude for LEDA 074886 (-17.3 mag) has been used here,
along with its ellipticity and A4/a values at 52′′.

in the literature

• SDSS J07418.17+282756.3

• Sextans A

• VCC 1699

• NGC 5322, NGC 4270

• NGC 4488
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• UGC 5119

• IC 3370

Comparing all those galaxies with LEDA 074886 the authors noted that most of the
galaxies listed above do not match their appearance. IC 3370 is however the closest
match to LEDA 974886 although it is not a dwarf galaxy.

The authors suspect that the most possible scenario to explain the presence of
LEDA 074886 is a near edge-on merger, coupled with the right viewing angle. The
simulations by Naab et al. (2006a) which used inclined mergers of 30 degrees generated
boxy galaxies. They therefore suspect that LEDA 074886 may have formed from disks
that merged in a plane, coupled with gas that dissipated to form the new inner disk.
This dissipation in the plane would preferentially adiabatically contract the long axis
of the new galaxy. The work of several authors (Jesseit et al., 2005; Naab et al., 2006a;
Hoffman et al., 2010) showed that major mergers of disk galaxies can, in the presence of
15%−20% gas, generate early-type slowly rotating galaxies with kinematically distinct
cores. They also showed that doubling this gas fraction results in galaxies with sharp
embedded disks on the ∼ Re scale. They however resemble dissipationless mergers,
i.e., boxy, at large radii where no effect by gaseous star formation can be seen. Such
a hybrid model with star formation in the inner regions and a ’dry’ merger event at
larger radii, may be plausible explanation for LEDA 074886.
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5. Simulations
The numerical simulations described in this chapter were performed to study various
scenarios that could have lead to the formation of LEDA 074886. Because of its
boxy outer part and discy stellar central region, the galaxy shows characteristics of
two different types of galaxy mergers. N -body simulations as discussed by Jesseit
et al. (2005) have shown that boxy orbits are most likely to form by major mergers
with an declination angle of 30 degree. They also found that a larger pericentral
distance supports the formation of boxy galaxies. Because such dry mergers only
contain collisionless particles they cannot explain the presence of a stellar discy center
in the middle of the galaxy. Naab et al. (2006b) performed simulations with gas
finding that the presence of gas in mergers has a significant impact on the orbital
structure. Generally, they found that gas destroys the box orbits at the center of
the galaxies and minor axis tubes become more populated. They have shown that in
contrast to the collisionless case, equal mass mergers with gas do not result in very
boxy remnants. Hoffman et al. (2010) showed that equal mass mergers of disk galaxies
can in the presence of 15%-20% gas, generate early-type slowly rotating galaxies with
kinematically distinct cores. They also noted that as the gas fraction increases, the
box orbits in the center of the galaxy are increasingly replaced by a sharp embedded
disk. It was also shown that the outer parts of the remnants are less relaxed than
the inner parts, and are therefore largely unaffected by the gas content of the disks.
Such a scenario described by Hoffman et al. (2010) therefore seems to be likely to have
formed LEDA 074886.

Building on the work of Jesseit et al. (2005); Naab et al. (2006a); Hoffman et al.
(2010) we have performed a variety of major mergers with a gas fraction of 10%, 15%,
and 20%. The spins of the two merging galaxies either pointed along the same axis (up-
up; s1) or opposite to each other (up-down; s2). The initial condition code introduced
by Springel & Hernquist (2005) was used to produce the particle distribution of an
isolated galaxy. The code assumes an NFW profile for the galaxy with an exponential
disc, and a spherical, non rotating bulge. The general parameters to generate the
isolated galaxy are

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
CC= 1 6 . ; halo c o n c en t r a t i o n (NFW DM Halo only ) ∗/
V200= 1 2 . 5 ; c i r c u l a r v e l o c i t y v 200 ( in km/ sec ) ∗/

(NFW DM Halo + baryons ) ∗/
LAMBDA= 0 . 0 8 5 ; sp in parameter ∗/
MD= 0 . 0 8 ; d i sk mass f r a c t i o n ∗/
MB= 0 . 0 1 ; bulge mass f r a c t i o n ∗/
JD= MD; d i sk sp in f r a c t i o n ∗/

∗/
GasFraction =0.1 ; r e l a t i v e content o f gas in the d i sk ∗/
DiskHeight= 0 .1 ; t h i c k n e s s o f d i sk in u n i t s o f r a d i a l s c a l e l ength ∗/
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BulgeS ize= 1 .0 ; bulge s c a l e l ength in u n i t s o f d i sk s c a l e l ength ∗/
∗/

N HALO= 1000000; d e s i r e d number o f p a r t i c l e s in dark halo ∗/
N DISK= 500000; d e s i r e d number o f c o l l i s i o n l e s s p a r t i c l e s in d i sk ∗/
N GAS= 100000; number o f gas p a r t i c l e s in d i sk ∗/
N BULGE= 62500; number o f bulge p a r t i c l e s ∗/

∗/
HI GasMassFraction= 0 . 1 ; /∗ in terms of the t o t a l gas mass ∗/
HI GasDiskScaleLength= 1 . 0 ; /∗ in terms of s c a l e l e n g t h o f the d i s k ∗/

∗/
Q s t a b i l i z e f a c t o r =1.5 ; ∗/
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

where v200 is the virial velocity of the galaxy which also sets the halo mass and the
virial radius r200 through

M200 = 2.33× 105V 3
200M� (5.1)

and
v200 =

√
GM200

r200
(5.2)

The cc concentration determines the radial scale of the halo as cc = r200/rs where rs
is the bulge radius.

The simulations have all been performed with the RAMSES code previously dis-
cussed and using the cooling mechanism as described by Sutherland & Dopita (1993).
The functions implemented to describe the cooling mechanism covers a wide grid of
temperature and metallicities using published atomic data and processes. For the
AMR simulation, a minimum level of 7, and a maximum level of 15 was used. With a
boxsize of 1.095× 103 kpc, the highest spacial resolution per grid is 0.33 kpc1.

An isolated dry disk was first simulated to test the stability of the initial conditions.
Such an isolated run was repeated with gas and star particles in the galaxy with a gas
fraction of 10%.

Next, two isolated galaxies were set up with the RAMSES merger patch. In
doing so, the particle distribution of the isolated galaxy is translated and duplicated
for the spacial distribution given in the MERGER PARAMS in the namelist file
and calculated as explained above. The gas distribution of the galaxy was calculated
within the merger patch using an analytical function which is a function of the particle
distribution. The initial total velocity Vgal1 and Vgal2 also had to be specified.
&MERGER PARAMS

r a d p r o f i l e=’ exponent i a l ’
z p r o f i l e=’ exponent i a l ’
g a l c e n t e r 1 = 0 . 0 , 7 5 . 0 , 0 . 0
g a l c e n t e r 2 =0.0 ,−75.0 ,0 .0
Mgas disk1 =0.039803
Mgas disk2 =0.039803
t y p r a d i u s 1 =0.505809
t y p r a d i u s 2 =0.505809
c u t r a d i u s 1 =1.5

1boxlen/(22· levelmax) = 0.33 kpc
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c u t r a d i u s 2 =1.5
typ he ight1 =0.168603
typ he ight2 =0.168603
c u t h e i g h t 1 =0.5
c u t h e i g h t 2 =0.5
I G d e n s i t y f a c t o r =1.0d−4
V c i r c d a t f i l e 1=’ Vcirc1 . dat ’
V c i r c d a t f i l e 2=’ Vcirc2 . dat ’
i c p a r t f i l e g a l 1=’ i c p a r t 1 ’
i c p a r t f i l e g a l 2=’ i c p a r t 2 ’
g a l a x i s 1 = 0 . 0 , 0 . 0 , 1 . 0
g a l a x i s 2 =0.0 ,0 .0 ,−1.0
Vgal1 =4.6752588471390348 ,−11.919618046329621 ,0.0
Vgal2 =−4.6752588471390348 ,11.919618046329621 ,0.0

The merging of two galaxies was first demonstrated with a pure N -body simulation.
The galaxies were placed on parabolic orbits with an initial separation of rsep = 300
kpc and a pericenter distance of rp = 5 kpc. With this initial configuration and
assuming z = 0 the spacial position for galaxy 1 and 2, as well as the velocity can be
calculated with as

r1y = 150 (5.3)

r2y = −M1

M2
r1y

ṙ1y =
√
GM1

r
− GrpM2

1
8µr2

1y

ṙ2y = −ṙ1y

ṙ1x = − M1

4µr1y

√
2µGrp

ṙ2x = −ṙ1x

with µ = (M1M2)/(M1 +M2).
Because of technical issues, these pure N -body simulations can, unfortunately, not

be presented in this thesis. After testing the stability of the initial conditions as well as
the plausibility of the merger path, simulations (merger s1 fgas10, merger s2 fgas10,
merger s1 fgas15, merger s2 fgas15, merger s1 fgas20, merger s2 fgas20) with a gas
fractions of 10%, 15%, and 20% were performed each with varying orientation (s1, s2)
of the rotation angle of the galaxy.

Additionally two simulations (merger s1 fgas10 fb, merger s2 fgas10 fb) were per-
formed using the feedback mechanism implemented in RAMSES described in Dubois
& Teyssier (2008c). It accounts for star formation, supernova thermal feedback, and
supernova kinetic feedback.

A further two simulations (merger s1 box fb, merger s2 box fb) were performed us-
ing the new initial condition code patch developed during this thesis. These simulations
were also run with the feedback mechanism described above. The new initial condi-
tions patch differs from the merger patch already in RAMSES because it extracts
the AMR grid directly from a source output, rather than simply fitting an analytical
function over the particle distribution.
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A region from the last output of the feedback run was extracted, translated, rotated
and duplicated such that the two galaxies merged with each other at an inclination
angle of 15◦. The initial condition parameters GALAXY DUP PARAMS had to be
specified, indicating the spacial distance between the two boxes, initial position, and
velocity as well as specifying the size of the box to be extacted:
&GALAXY DUP PARAMS
r a d p r o f i l e=’ exponent i a l ’
z p r o f i l e=’ exponent i a l ’
g a l a x y r e p o s i t o r y=’ . . / m e r g e r s 1 f g a s 1 0 f b 3 / output 00121 / ’
s o u r c e g a l c e n t e r = 0 . 0 , 0 . 0 , 0 . 0
s o u r c e g a l r a d i u s =12.0
g a l c e n t e r 1 = 0 . 0 , 7 5 . 0 , 0 . 0
g a l c e n t e r 2 =0.0 ,−75.0 ,0 .0
g a l a x i s 1 =0 .0 , 1 . 0 , 1 . 504
g a l a x i s 2 =0 .0 , 1 . 0 , 1 . 504
Vgal1 =4.6752588471390348 ,−11.919618046329621 ,0.0
Vgal2 =−4.6752588471390348 ,11.919618046329621 ,0.0
V c i r c d a t f i l e 1=’ Vcirc1 . dat ’
V c i r c d a t f i l e 2=’ Vcirc2 . dat ’
i c p a r t f i l e g a l 1=’ i c p a r t 1 ’
i c p a r t f i l e g a l 2=’ i c p a r t 2 ’
/
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6. Results

In this chapter we present the results obtained throughout this thesis. We first discuss
the results from analysing the boxiness of the observational data and compare this
with the results presented in the original discovery paper. We show the analysis of the
newly discovered rectangular galaxy BM2. The main part of this chapter however, is
the analysis of the simulated data. We performed various equal mass (major) mergers
with three different gas fractions 10%, 15%, and 20%. Each gas fraction was simulated
in two different ways by changing the rotation angle of the two galaxies, where s1
denotes the same orientation (up, up) of the two rotation axes of the galaxies and
s2 denotes the counter orientation (up, down) of the two rotation axes. In order
to study the effect of feedback mechanisms on merger remnants with regard of their
boxiness two simulations were also performed with the feedback mechanism described
by (Dubois & Teyssier, 2008b) with a gas fraction of 10%. Two other simulations have
been performed by cutting out a box of the final output from the feedback simulation,
rotating, translating and duplicating the galaxy to again merge them together with
an equal orientation of the rotation axes as well as an opposite rotation of the two
axes. Each individual simulation was analysed in various ways regarding its boxiness.
First the boxiness as a function of the radius of one specific output was analysed. This
analysis was only done for the star particles in the simulation as such an analysis is
similar to the one performed in the paper of (Graham et al., 2012) and can also be
compared to the analysis of the observations performed with our program BELLE.
The program also was used to test whether in our simulations different orbit classes
dominate at different radii inside the merger remnants, as claimed by several authors
Barnes & Hernquist (1992). Secondly, the boxiness was analysed as a function of
time for six different radii. The purpose of this analysis was to better understand the
evolution of the boxiness over time and position within the galaxy. The third analysis
was supposed to test the assumption of Jesseit et al. (2005) regarding the different
viewing angle. They claimed that the principal axis of the merger remnants would
result in the most extreme boxiness values of all possible projections. For this purpose
the galaxy was analysed at different radii from different viewing angles by sampling
a sphere or line-of-sight (los) axis. In order to make this five dimensional analysis
understandable, the calculated maximum, minimum, and mean value of the boxiness
parameter a4 was plotted as a function of four different radii.
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6.1. OBSERVATIONS

6.1. Observations

6.1.1. LEDA 074886
In figure 6.1 the analysis of the boxiness parameter is shown. Comparing this analysis
with the analysis done in the paper shown in figure 4.4 one can immediately see the
difference in scales. The maximum boxiness in (Graham et al., 2012) is calculated to
be -0.08 at 53”, where the scale is such that 10” = 1.01 kpc, which is roughly the
galaxy’s major-axis half light radius. The maximum boxiness calculated with BELLE
and shown in the lower plot of figure 6.1 is however -0.8 around 5.2kpc. We could
not explain this order of magnitude of difference, despite private communications with
the original authors. A few things are of note. In the paper they stated that they
plotted the A4 coefficient to the cos 4θ Fourier component normalised by the semi-
major axis length a to give A4/a. This parameter was used to quantify the isophotal
shape. Looking at the the units of the two variables where A4 must be in units of
luminosity and a is in units of length it is clear that A4/a is not a unitless number.
The parameter A4/I0 however is a unitless number. In the upper plot of figure 6.1
the parameter A4/a is shown as a function of the radius. Comparing with the shape
of the curve presented in the paper those two curves look nothing alike. If however
the A4/I0 parameter is compared with the A4/a parameter presented in the paper the
two curves look very much alike having maxima at similar positions and showing the
same trend of boxier galaxies the further out one goes in radius. For all the future
comparisons of the simulations the normalised parameter A4/I0 was used.

6.1.2. BM2

In figure 6.2 the analysis of the parameter A4/a, and A4/I0 is shown as a function of
the radius. It can be seen that the boxiness of BM2 is not a strong as the boxiness
of LEDA 074886. In fact the maximum boxiness is around -0.2 at 2.2kpc whereas the
maximum boxiness of LEDA 074886 was calculated to be -0.8. The analysis of this
galaxy shows that the boxiness of a galaxy cannot be purely determined by eye. A
boxy looking galaxy does not necessarily give rise to a big boxiness parameter.

6.2. Collisional Runs

In order to study various scenarios that could have lead to the formation of LEDA
074886 a number of simulations have been carried out. It already has been found that
the presence of gas has a significant impact on the orbital structure of the merger
remnant (Naab et al., 2006a). Generally, they found that gas destroys the box orbits
at the center of the galaxies and minor axis tubes become more populated. In contrast
to collisionless equal mass mergers, major mergers with gas do not result in very
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6.2. COLLISIONAL RUNS

Figure 6.1.: Analysis of the boxiness parameter for LEDA 074886. The upper plot
shows the A4/a parameter as a function of the radius. The lower plot
shows the A4/I0 parameter as a function of the radius.

boxy remnants. Building on the work of Naab et al. (2006a), Hoffman et al. (2010)
found that equal mass mergers of disk galaxies can in the presence of 15%-20% gas,
generate early-type slowly rotating galaxies with kinematically distinct cores. They
also noted that as the gas fraction increases, the box orbits in the center of the galaxy
are increasingly replaced by a sharp embedded disk. They however also show that
the outer parts of the remnants are largely unaffected by the gas content of the disks
leading to a more boxy outer region. Since LEDA 074886 shows a boxy outer part
and a discy stellar central region the scenario described by Naab et al. (2006a) seems
to be likely. Building on this work and to further test the effect of gas we performed
collisional simulations with a various gas fraction of 10%, 15%, and 20%. For all the
simulations the same analysis has been carried out. In each case the different density
maps of the stellar as well as the dark matter distributions are shown for the different
los axis directions. The A4/I0 parameter was analysed as a function of the radius at
one given output for the stellar density distribution. The results of the analysis are
again shown for the different los axis directions. Additionally the A4/I0 was studied
as a function of time for different radii for the stellar as well as the dark matter
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6.2. COLLISIONAL RUNS

Figure 6.2.: Analysis of the boxiness parameter for BM2. The upper plot shows the
A4/a parameter as a function of the radius. The lower plot shows the
A4/I0 parameter as a function of the radius.

distribution. In all the plots ri = i/6 · rhl, for i ∈ [1, 6] and where rhl is the half light
radius of the last output for the stellar and dark matter distribution calculated for all
the los axis directions accordingly. It is important to stress that each noted radii (ri)
of one los axis direction is the same as the noted radii ri of another los axis direction.
For the stellar particles the effect of the viewing angle on the boxiness parameter is also
calculated. For this the surface of the sphere of all the possible los axis directions had
to be sampled uniformly. To sample one vector, the points x, y, and z are calculated
by choosing

x =
√

1− u2 cos θ (6.1)
y =

√
1− u2 sin θ

z = u

with θ ∈ [0, 2φ) and u ∈ [−1, 1]. In the analysis presented here 20 different θ angles as
well as 10 different u were uniformly chosen. The pictures show the possible change
of the boxiness as a function of the different radii. The errorbars are calculated as the
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6.2. COLLISIONAL RUNS

maximum and minimum value of all the possible A4/I0 parameters found when varying
θ and u. The circle in the middle denotes the mean value of all the different A4/I0
parameters. For the dark matter distribution the study of the triaxiality as a function
of time is also shown for different radii. Here again ri = i/6 · rhl, for i ∈ [1, 6] for the
half light radius for the dark matter distribution calculated from the last output.

6.2.1. merger s1 fgas10
The analysis of the stellar particles from the simulation with a 10% gas fraction and
the two rotation vectors pointing in the same direction can be seen in figure 6.3.
Looking at the parameter A4/I0 as a function of the radius for the different los axis
(x-direction, 6.3d, 6.3e, and 6.3f) one can see that this remnant is not boxy. This can
also be confirmed when looking at the stellar density map of the merger remnant (6.3a,
6.3b, and 6.3c). Only in the los axis in z direction (6.3c) a slightly negative A4/I0
value can be observed. The position of these negative values correspond however to the
star forming sites within the galaxy. It can be assumed that the forming stars disturb
the isophotal shape which can lead to a negative A4/I0 parameter. The analysis of
the A4/I0 parameter as a function of time for different radii is shown in in the plots
(6.3g, 6.3h, and 6.3i). Looking at the different los axis directions one can generally see
that the fluctuations at smaller radii are smaller than at larger radii, but they never
become significantly negative. In the analysis of the A4/I0 parameter as a function of
the angle it can be seen that the A4/I0 parameter varies more at the outskirts of the
galaxy. The range of the parameter is from -0.3 to 0.3 in the outer parts of the galaxy
and from -0.15 to 0.1 in the inner parts of the galaxy.

The A4/I0 parameter analysis as a function of time for the different los in directions
of the dark matter particles is shown in figures (6.3g, 6.3h, and 6.3i). Finding a
significant trend in the analysis of the A4/I0 parameter with time is difficult. One
can see that the A4/I0 parameter only ever becomes negative for the los axis in the z
direction, otherwise the fluctuations are in the positive region and span a range from
0.0 to 0.4, and a range from -0.1 to 0.6 for the A4/I0 parameter for the los axis in
the x direction, and y direction, respectively. The triaxiality as a function of time for
different radii is shown in figure 6.4g. Here it can be seen that the triaxiality at different
radii are faintly tracing each other. The shape of the dark matter halo therefore does
not change as a function of radius. The triaxiality ranges from a minimum of 0.85 to
a maximum of 1.0 bearing a prolate shape of the halo.

6.2.2. merger s2 fgas10
The full analysis of the simulations of the stellar particles, and the dark matter particles
for a gas fraction of 10% and the two rotation vectors pointing opposite to each other
can be seen in figures 6.5, and 6.6, respectively. Observing the parameter A4/I0 over
time (6.5d, 6.5e, and 6.5f) one can see that the parameter is above zero at all the
different radii for this output for the two los axis directions x, and y. The A4/I0
parameter ranges from 0.01 - 0.05, and 0.02 - 0.06 at the two los axis directions
x, and y. Only in the los axis direction of z does the parameter become zero, at
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6.2. COLLISIONAL RUNS

(a) Density map of the stars with
los axis in x direction.

(b) Density map of the stars with
los axis in y direction.

(c) Density map of the stars with
los axis in z direction.
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(d) Analysis of the A4/I0 pa-
rameter as a function of ra-
dius for the los axis in x di-
rection.
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(e) Analysis of the A4/I0 pa-
rameter as a function of ra-
dius for the los axis in y di-
rection.
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(f) Analysis of the A4/I0 pa-
rameter as a function of ra-
dius for the los axis in z di-
rection.
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(g) Analysis of the A4/I0 pa-
rameter as a function of
time for different radii in x
direction.

9 10 11 12 13 14 15 16
Time [Gyr]

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
4/
I 0

r1

r2

r3

r4

r5

r6

(h) Analysis of the A4/I0 pa-
rameter as a function of
time for different radii in y
direction.
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(i) Analysis of the A4/I0 pa-
rameter as a function of time
for different radii in z direc-
tion.
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(j) Analysis of the A4/I0 pa-
rameter as a function of the
different viewing angle and
the radii.

Figure 6.3.: Analysis of the stars from the simulation with a 10% gas fraction and the
two rotation vectors pointing in the same direction.
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6.2. COLLISIONAL RUNS

(a) Density map of the dark mat-
ter praticles with los axis in x
direction.

(b) Density map of the dark mat-
ter particles with los axis in y
direction.

(c) Density map of the dark mat-
ter particles with los axis in z
direction.
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(d) Analysis of the A4/I0 pa-
rameter as a function of
time for different radii in x
direction.
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(e) Analysis of the A4/I0 pa-
rameter as a function of
time for different radii in y
direction.
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(f) Analysis of the A4/I0 pa-
rameter as a function of time
for different radii in z direc-
tion.
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(g) Analysis of the triaxiality
parameter as a function of
time for different radii.

Figure 6.4.: Analysis of the dark matter from the simulation with a 10% gas fraction
and the two rotation vectors pointing in the same direction.
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6.2. COLLISIONAL RUNS

times reaching its most negative part at small radii with an A4/I0 parameter of -0.01.
Comparing the position of the negative parameters and the star formation sites one
can again see a correlation. It can be assumed that the star formation again caused
the A4/I0 parameter to reach negative values. Looking at the analysis of the A4/I0
parameter with time (6.5g, 6.5h, and 6.5i) for different radii one observes that the
different parameters at the different radii remarkably track each other for both los
axis directions x, and y. Looking at the analysis for the los axis direction z one can
see that the outer most radii almost inversely track the inner regions. Especially for
the los axis direction z the A4/I0 parameter reaches very low numbers. An analysis
of the output with the most negative parameter has been attempted. The parameters
at this output generally fluctuated very strongly for most of the radii reaching very
high and very low values at the same time. Because of this observed chaos one can
assume that the galaxy was not relaxed at the time where a lot of movement was still
underway until the galaxy relaxed in its state (last output). From the ranges of the
different parameter when observing the different los axis orientations (6.5j) one can
see that the range between the maximum and minimum value at the different radii is
comparable, where the maximum difference at the smallest radius ranges from -0.06
to 0.06.

The A4/I0 parameter as a function of time for the dark matter particle distribution
is harder to interpret as no significant tracking can be observed (6.6a, 6.6b, and 6.6c).
For all of the los axis directions no significant trend can be observed. Looking at the
triaxiality parameter as a function of time (6.6g) one can however see that the inner
part of the galaxy has a lower triaxiality, 0.85 at the minimum, than the outer part of
the galaxy with a maximum value being 1.0 (prolate orbit).

6.2.3. merger s1 fgas15
The results of the stellar analysis of the simulations with a gas fraction of 15% and the
two rotation axes of the galaxies pointing in the same direction can be seen in figure
6.7. Figures 6.7d, 6.7e, and 6.7f show the result of the analysis of the A4/I4 parameter
as a function of the radius at a given output. Where the A4/I0 parameter for the los
axis direction x and y is not negative it is negative for some intermediate radius and
large radius for the los axis direction z. The range of the parameter in the los axis
direction z lies between 0.01 and -0.09. The results of the A4/I0 parameter analysis as
a function of time is shown in figures 6.7g, 6.7h, and 6.7i. It can be observed that the
general trend of this galaxy for the A4/I0 parameter is to oscillate around zero with
the mean value at zero. Specially when looking at the analysis of the A4/I0 parameter
in the los axis orientation in direction z one can see that the largest fluctuations are
in the center of the galaxy. This observation is opposite to the observation made
when looking at the range of the possible parameters for different los axis directions
as a function of the radius (6.7j. Here it can be observed that the parameter has the
largest fluctuations for larger radii where the maximum range lies between -0.2 to 0.2.
These observations suggest that even though the galaxy obviously experiences stages
where the A4/I0 parameter at larger radii could be useful when comparing with the
observational data, the boxiness of this galaxy is surely not stable. Nevertheless this
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(a) Density map of the stars with
los axis in x direction.

(b) Density map of the stars with
los axis in y direction.

(c) Density map of the stars with
los axis in z direction.
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(d) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in z direction.
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(g) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.
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(h) Analysis of the A4/I0 param-
eter as a function of time for
different radii in y direction.
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(i) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in z direction.
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(j) Analysis of the A4/I0 parame-
ter as a function of the different
viewing angle and the radii.

Figure 6.5.: Analysis of the stars from the simulation with a 10% gas fraction and the
two rotation vectors pointing in the opposite direction.
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(a) Density map of the dark mat-
ter particles with los axis in x
direction.

(b) Density map of the dark mat-
ter particles with los axis in y
direction.

(c) Density map of the dark mat-
ter particles with los axis in z
direction.
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(d) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in z direction.
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(g) Analysis of the triaxiality pa-
rameter as a function of time
for different radii.

Figure 6.6.: Analysis of the dark matter from the simulation with a 10% gas fraction
and the two rotation vectors pointing in the opposite direction.
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analysis did not show signs of a discy inner region.
Looking at the evolution of the A4/I0 parameter for the dark matter distribution

with time for different radii (6.4d, 6.4e, and 6.4f) one can see a similar picture of
the parameter fluctuating around zero where the relaxed state seems to be around
zero. Comparing these results with the analysis of the triaxiality (6.8g) where the
triaxiality seems to fluctuate around 0.95 and remembering that prolate objects are
usually supported elliptical galaxies confirms that the galaxy is not boxy. Nevertheless
it is important to note that the observation of LEDA 074886 is only at one point in
its lifetime and we may have been extremely lucky and observed an unrelaxed state of
the galaxy.

6.2.4. merger s2 fgas15
Looking at the analysis of the A4/I0 parameter as a function of radius for a given
output of the simulation with a 15% gas fraction and the two rotation angle pointing
into the opposite direction one can see that the general value of the parameter for the
los axis direction x, and y lies above zero (6.9d, and 6.9e). The values for the los axis
direction z however lie chaotically scattered above and below zero (6.9f). Even even
a trend can be observed it can be said that the parameter values tend to be lower at
larger radii than at small radii. The values of the A4/I0 for the los axis direction z
lie between -0.04 and 0.02. These fluctuations almost look like a statistical scattering
around zero indicating for the galaxy to be generally not boxy. Looking at the figures
6.9g, 6.9h and 6.9i one can see that specially for the los axis directions x, and y the
A4/I0 parameter is lowest at small radii and largest at large radii. They range from
-0.5 to 0.1 for the los axis direction x, and -0.35 to 0.05 for the los axis direction y.
The A4/I0 axis parameter analysis as a function of the different viewing angles for the
los axis direction shows that the maximum range lies between -0.12 and 0.1 for the
largest radius, where the other radii lie within a similar range. The remnant of this
merger simulation can therefore show a boxy side. From the analysis it is however
very unlikely for the galaxy to have a discy inner region and a boxy outer part.

The analysis of the dark matter distribution is shown in figure 6.10. Looking at
the A4/I0 parameter as a function of time for different radii one can see a reversed
picture for the los axis directions x and y than from the same analysis for the stellar
particles. In other words, the A4/I0 parameter values are lowest for larger radii and
higher for smaller radii. The minimum value is -0.03, and -0.01 whereas the maximum
value is 0.08, and 0.09 for the los axis direction x and y, respectively. The boxiness of
the galaxies looking from the los x and y is therefore not significant. Looking at the
analysis for the los axis direction z it is hard to distinguish a general trend. The range
of the possible A4/I0 values is from -0.04 to 0.02.

6.2.5. merger s1 fgas20
The analysis of the stellar particles of the merger simulation with a 20% gas fraction
and the rotation vectors pointing in the same direction can be seen in figure 6.11.
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(a) Density map of the stars with
los axis in x direction.

(b) Density map of the stars with
los axis in y direction.

(c) Density map of the stars with
los axis in z direction.
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(d) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in z direction.
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(g) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.
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(h) Analysis of the A4/I0 param-
eter as a function of time for
different radii in y direction.
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(i) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in z direction.
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(j) Analysis of the A4/I0 parame-
ter as a function of the different
viewing angle and the radii.

Figure 6.7.: Analysis of the stars from the simulation with a 15% gas fraction and the
two rotation vectors pointing in the same direction.
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(a) Density map of the dark mat-
ter praticles with los axis in x
direction.

(b) Density map of the dark mat-
ter praticles with los axis in y
direction.

(c) Density map of the dark mat-
ter praticles with los axis in z
direction.
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(d) Analysis of the A4/I0 pa-
rameter as a function of
time for different radii in x
direction.

8 9 10 11 12 13 14 15 16
Time [Gyr]

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
4/
I 0

r1

r3

r4

r5

r6

(e) Analysis of the A4/I0 pa-
rameter as a function of
time for different radii in y
direction.
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(f) Analysis of the A4/I0 pa-
rameter as a function of time
for different radii in z direc-
tion.
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(g) Analysis of the triaxiality
parameter as a function of
time for different radii.

Figure 6.8.: Analysis of the dark matter from the simulation with a 15% gas fraction
and the two rotation vectors pointing in the same direction.
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(a) Density map of the stars with
los axis in x direction.

(b) Density map of the stars with
los axis in y direction.

(c) Density map of the stars with
los axis in z direction.
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(d) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in z direction.
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(g) Analysis of the A4/I0 pa-
rameter as a function of
time for different radii in x
direction.
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(h) Analysis of the A4/I0 pa-
rameter as a function of
time for different radii in y
direction.
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(i) Analysis of the A4/I0 pa-
rameter as a function of time
for different radii in z direc-
tion.
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rameter as a function of the
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Figure 6.9.: Analysis of the stars from the simulation with a 15% gas fraction and the
two rotation vectors pointing in the opposite direction.
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(a) Density map of the dark mat-
ter particles with los axis in x
direction.

(b) Density map of the dark mat-
ter particles with los axis in y
direction.

(c) Density map of the dark mat-
ter particles with los axis in z
direction.
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(d) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in z direction.
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(g) Analysis of the triaxiality pa-
rameter as a function of time
for different radii.

Figure 6.10.: Analysis of the dark matter from the simulation with a 15% gas fraction
and the two rotation vectors pointing in the opposite direction.
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Looking at the density map of the stellar particles (6.11a, 6.11b, and 6.11c) one gen-
erally does not expect the galaxy to have high negative A4/I0 parameter values. This
assumption is confirmed when looking at the A4/I0 parameter values as a function
of the radius (6.3d, 6.3e, and 6.3f) as well as as a function of time for different radii
(6.11g, 6.11h, and 6.11i). The A4/I0 parameter values for the los axis direction x and
y as a function of the radius are scattered around zero whereas the negative values
tend to arise at small radii. The scale of these fluctuations is, however, not high with
a maximal amplitude of 0.015, and 0.03 for the los axis direction x and y, respectively.
For the los axis direction z one can see that the A4/I0 parameter values lie in the
low range negative side, with a range between -0.025 and 0.0. Looking at the trend
from the analysis of the A4/I0 parameter as a function of time for different radii one
can generally say that the values of the parameter fluctuate around zero with small
deviations after the galaxy seems to have reached its relaxed state. Only in the los
axis direction z are bigger fluctuations for the smallest radii ranging from -0.3 to 0.4
observed. The analysis of the A4/I0 parameter for different viewing angles is shown
in figure 6.11j. One can see that the largest A4/I0 parameter value is 0.15 and can
be observed at the second largest radii. The smallest parameter value is -0.1 and is
observed at the largest radii. The larger radii therefore span the largest range of the
possible A4/I0 parameter values for a given radii.

The analysis of the dark matter particles are shown in figure 6.12. The plots of
the dependence of the A4/I0 parameter on the radius (6.12d, 6.12e, and 6.12f) show
that the parameter values generally lie close to zero, whereas a few spikes for smaller
times can also be observed. They however are less frequent when the galaxy seems to
be in a relaxed state. The triaxiality analysis shown in figure 6.12g shows a similar
picture where the triaxial parameter seems to converge to 0.9 with increasingly smaller
fluctuations at later times. The dark matter system is therefore observed to be prolate.

Looking at the stellar density distribution in figures 6.11a, 6.11b, and 6.11c and
taking into account the analysis above, one can say that this merger remnant from
two galaxies with a gas fraction of 20% and and rotation vectors pointing into the
same direction is not boxy.

6.2.6. merger s2 fgas20
The simulations presented in this section have been carried out with a gas fraction
of 20% and the two rotation vectors pointing opposite to each other. The analysis
of the stellar distribution of the merger remnants is shown in figure 6.13. Looking
at the stellar density map (6.13a, 6.13b, and 6.13c) one can already assume that this
galaxy is not boxy. The different star formation sites which can also be spotted in
figure 6.13c give rise to the expectation that at those positions the boxiness parameter
might become negative. These assumptions are indeed confirmed when looking at the
A4/I0 parameter as a function of the radii for a given output. Looking at the A4/I0
parameter as a function of time (6.13g and 6.13h) for different radii one can see that
for the los axis directions x and y the galaxy system merges towards a parameter value
of zero with increasingly smaller fluctuations of the parameter. The fluctuations of the
A4/I0 parameters for the los axis direction z are larger, ranging from -0.2 to 0.1, and
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(a) Density map of the stars with
los axis in x direction.

(b) Density map of the stars with
los axis in y direction.

(c) Density map of the stars with
los axis in z direction.
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(d) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis z direction.
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(g) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.
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(h) Analysis of the A4/I0 param-
eter as a function of time for
different radii in y direction.
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(i) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in z direction.
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(j) Analysis of the A4/I0 parame-
ter as a function of the different
viewing angle and the radii.

Figure 6.11.: Analysis of the stars from the simulation with a 20% gas fraction and
the two rotation vectors pointing in the same direction.
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(a) Density map of the dark mat-
ter praticles with los axis in x
direction.

(b) Density map of the dark mat-
ter praticles with los axis in y
direction.

(c) Density map of the dark mat-
ter praticles with los axis in z
direction.
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(d) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in z direction.
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(g) Analysis of the triaxiality pa-
rameter as a function of time
for different radii.

Figure 6.12.: Analysis of the dark matter from the simulation with a 20% gas fraction
and the two rotation vectors pointing in the same direction.
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no obvious trend can be noted. The analysis of the A4/I0 parameter as a function of
the different viewing angles (6.13j) reveals the change in the parameter is the largest
for large radii ranging from -0.2 to 0.2.

Looking at the analysis of the A4/I0 parameter for the dark matter particles as a
function of time one cannot observe any obvious trend. It can, however, be noted
that for the los axis orientation x and y the parameter values are generally above zero,
whereas for the los axis orientation z the parameter values are mostly below zero.
Looking at the triaxiality analysis as a function of time in figure 6.14g one can see
that the small radii has the smallest triaxiality (mean value of 0.91) whereas the largest
radii has the largest triaxiality (mean value of 0.97). The dark matter distribution is
therefore prolate.

56



6.2. COLLISIONAL RUNS

(a) Density map of the stars with
los axis in x direction.

(b) Density map of the stars with
los axis in y direction.

(c) Density map of the stars with
los axis in z direction.
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(d) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis z direction.
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(g) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.
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(h) Analysis of the A4/I0 param-
eter as a function of time for
different radii in y direction.
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(i) Analysis of the A4/I0 parame-
ter as a function of time for dif-
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Figure 6.13.: Analysis of the stars from the simulation with a 20% gas fraction and
the two rotation vectors pointing in the opposite direction.
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6.2. COLLISIONAL RUNS

(a) Density map of the dark mat-
ter praticles with los axis in x
direction.

(b) Density map of the dark mat-
ter praticles with los axis in y
direction.

(c) Density map of the dark mat-
ter praticles with los axis in z
direction.
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(d) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in z direction.
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(g) Analysis of the triaxiality pa-
rameter as a function of time
for different radii.

Figure 6.14.: Analysis of the dark matter from the simulation with a 20% gas fraction
and the two rotation vectors pointing in the opposite direction.
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6.3. Gaseous Feedback Run

Mergers are believed to advance the accumulation of cold gas into the center of a
merger remnant resulting in an increase in the star formation rate (SFR). A fraction
of newly formed stars is short-lived and these stars explode in supernovae which again
feed heat back into the surrounding gas. This can in turn again result in the reducing
the efficiency of star formation and in some cases blow gas out of the galaxy in a
galactic wind. These supernovae-driven winds are thought to suppress the formation
of low-gas galaxies. Another potential source of feedback is provided by the accretion of
gas onto a supermassive black hole in the center of the galaxy, called an active galactic
nucleus (AGN). In all the simulations presented above such feedback mechanism have
been neglected. In order to analyse the effect of feedback mechanisms on merger
remnants with regard of their boxiness two simulations with a gas fraction of 10%
have been performed with the angular momentum vector pointing in the same and
opposite direction. The used feedback mechanism is described in Dubois & Teyssier
(2008b) where the effect of AGN’s has been neglected for the simulations presented
here. Additionally, two other simulations have been performed by cutting out a box of
the final output from the feedback simulation, rotating, translating, and duplicating
the galaxy to again merge them together with an equal orientation of the rotation axes
as well as an opposite rotation of the two axes.

6.3.1. merger s1 fgas10 fb
The stellar analysis of the feedback simulations with a gas fraction of 10% and the
two rotation vectors pointing in the same direction can be seen in figure 6.15. Looking
at the density map of the stars (6.20a, 6.20b) one can already assume that the A4/I0
parameter values are below zero for the outer part of the galaxy. This is confirmed
by the analysis of the A4/I0 parameter seen in the plots (6.20d, 6.20e, 6.20f). For the
los axis directions x and y one can see that the A4/I0 parameter reaches from positive
values at small radii to negative values at larger radii. This is very promising as the
positive parameter values suggest that the inner region hosts a discy inner part where
the outer region is clearly boxy. The A4/I0 parameters for the los axis direction z
are only zero ranging from -0.1 to 0.0. Looking at the A4/I0 parameter as a function
of time for different radii one can observe that the parameter values are lowest for
large radii and highest for small radii for the los axis directions x and y (6.15g, and
6.15h). At large radii the values range from -0.13 to 0.05, and -0.13 to 0.15 for the
los axis directions x and y, respectively. At small radii the values range from 0.1 to
0.1 for the los axis direction x and from 0.1 to 0.2 for the los axis direction y. These
ranges also indicate the disk like structure in the inner region of the galaxy as the
A4/I0 parameter never reaches negative values for small radii. At large radii however
the parameter values are mostly negative. The fluctuations of the A4/I0 parameters
also decrease with increasing time in correspondence with when the galaxy reaches a
stable configuration. This indicates that although the galaxy seems to be boxy it is
still stable for a few Gyr. The analysis of the A4/I0 parameter for the los axis direction
can also be seen in plot 6.15i. For this los it is harder to distinguish a trend. The
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parameter value ranges from -0.11 to 2.5 whereas the fluctuations also seem to decrease
with increasing time. The A4/I0 parameter value as a function of the different viewing
angles also reveals that the mean value for all the different radii is close to zero. There
are however huge fluctuations for parameter values to be below zero. For instance,
the minimum value of the A4/I0 parameter when looking from different angles is -1.1.
This motivated further analysis of this galaxy further. In figure 6.17 the analysis of the
viewing angle where the most negative parameter for the largest radii was observed is
shown1. In plot 6.17c one can see that for this galaxy the A4/I0 parameter goes from
positive values at large radii to small values at large radii. The minimum value of the
parameter is comparable with the minimum boxiness parameter of LEDA 074886.

The analysis of the dark matter distribution is shown in figure 6.16 where the pa-
rameter A4/I0 is shown as a function of time for different radii in the plots 6.16d,
6.16e, and 6.16f. It is hard to see a trend for all the different los axis directions. The
A4/I0 parameters range from -0.02 to 0.08, -0.02 to 0.06, and -0.05 to 0.02 for the
los axis directions x, y, and z, respectively. Looking at the triaxiality as a function of
time one can generally see that the triaxiality of the galaxy is lower at early times and
higher at later times for small radii. The triaxiality of the inner part of the galaxy is
rising from the lowest value of 0.84 at the beginning to the highest value of 0.98 in the
middle and falling again onto a mean value of 0.9. Similar behavior can be seen for
the second and third smallest radii. The triaxiality of the outer parts of the galaxy is
however more stable compared with the inner part.

We can conclude that a possible scenario for the formation of LEDA 074886 is by
merging two galaxies with a low gas fraction of around 10% and the two rotation
angles pointing into the same direction. It can be assumed that it is important that
the simulations are done with a feedback mechanism. The slightly triaxial halo of the
galaxy at the beginning of the formation can be understood to support the building
of a boxy galaxy, whereas the prolate halo in the middle phase might be responsible
for the stability of the galaxy. Further analysis to test this hypothesis in more detail
would have to be carried out.

6.3.2. merger s2 fgas10 fb
The analysis of the stellar distribution for the feedback run with a gas fraction of
10% and rotating vectors pointing in the opposite direction is shown in figure 6.18.
Looking at the density maps of the stars (6.18a, 6.18b, and 6.18c) one can see that this
galaxy is highly unlikely to show any sign of boxiness. It also seems that this galaxy is
unstable (also when looking at density maps at earlier times). The analysis of theA4/I0
parameter as a function of the radius at a given output reveals that the nonboxiness of
the merger remnant as the majority of the calculated parameter values are above zero
(6.18d, 6.18e, and 6.18f). The analysis of the A4/I0 parameter as a function of time
for different radii (6.18g, 6.18h, and 6.18i) shows that the boxiness is for the majority
of the time above zero for the los axis orientations x and y. There are, however, a

1It is important to note that the gas distribution is slightly tilted in the x-y axis from our line-of-sight
axis z for reasons still unknown.
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(a) Density map of the stars with
los axis in x direction.

(b) Density map of the stars with
los axis in y direction.

(c) Density map of the stars with
los axis in z direction.
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(d) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in z direction.
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(g) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.
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(h) Analysis of the A4/I0 param-
eter as a function of time for
different radii in y direction.
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(i) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in z direction.
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(j) Analysis of the A4/I0 parame-
ter as a function of the different
viewing angle and the radii.

Figure 6.15.: Analysis of the stars from the feedback simulation with a 10% gas fraction
and the two rotation vectors pointing in the same direction.
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(a) Density map of the dark mat-
ter praticles with los axis in x
direction.

(b) Density map of the dark mat-
ter praticles with los axis in y
direction.

(c) Density map of the dark mat-
ter praticles with los axis in z
direction.
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(d) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.

13 14 15 16 17 18 19
Time [Gyr]

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

A
4/
I 0

r1

r2

r3

r4

r5

r6

(e) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in z direction.
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(g) Analysis of the triaxiality pa-
rameter as a function of time
for different radii.

Figure 6.16.: Analysis of the dark matter from the feedback simulation with a 10% gas
fraction and the two rotation vectors pointing in the same direction.
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(a) Density map of the stars with los in the direction
of the most boxiness value.

(b) Density map of the gas with
los in the direction of the most
boxiness value.
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iness value.

Figure 6.17.: Analysis of the star and gas distribution from the feedback simulation
with a 10% gas fraction and the two rotation vectors pointing in the same
direction.
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few spikes that needed to be analysed in further detail for these los axis orientations.
When looking at the evolution of the parameter for the los axis orientation z one
can see that the A4/I0 parameter values are going down twice to -0.25. Because of
these observations above the boxiness parameter of the different los axis directions x,
y, and z was analysed for the output with the corresponding lowest A4/I0 parameter
observed. The parameters obtained in this way where however extremely noisy making
it impossible to analyse properly. This supports the assumption of the galaxy is still
not in a relaxed state. From this analysis it can however be noted that if the galaxy
has shown a low A4/I0 parameter value it was mostly at low radii. In either direction
a discy inner region was not detected making it very unlikely to provide a possible
explanation for the formation of LEDA 074886.

The analysis of the A4/I0 parameter with time for the dark matter distribution
(6.19d, 6.19e, and 6.19f) is again hard to interpret. It can be noted that the A4/I0
parameter values for the los axis directions x, and x are generally above zero whereas
for the los axis direction z the values fluctuate around -0.01. The amplitude of the
fluctuation are 0.04, 0.05, and 0.02 for the los axis directions x, y, and z, respectively.
The triaxiality of the dark matter distribution does not fluctuate much and is around
0.94 indicating a prolate halo for this galaxy.
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(a) Density map of the stars with
los axis in x direction.

(b) Density map of the stars with
los axis in y direction.

(c) Density map of the stars with
los axis in z direction.
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(d) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in z direction.
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(g) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.
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(h) Analysis of the A4/I0 param-
eter as a function of time for
different radii in y direction.
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(i) Analysis of the A4/I0 parame-
ter as a function of time for dif-
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ter as a function of the different
viewing angle and the radii.

Figure 6.18.: Analysis of the stars from the feedback simulation with a 10% gas fraction
and the two rotation vectors pointing in the opposite direction.
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(a) Density map of the dark mat-
ter praticles with los axis in x
direction.

(b) Density map of the dark mat-
ter praticles with los axis in y
direction.

(c) Density map of the dark mat-
ter praticles with los axis in z
direction.
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(d) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in z direction.
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(g) Analysis of the triaxiality pa-
rameter as a function of time
for different radii.

Figure 6.19.: Analysis of the dark matter from the feedback simulation with a 10% gas
fraction and the two rotation vectors pointing in the same direction.

66



6.4. RESTART SIMULATIONS WITH CUT OUT BOX AND FEEDBACK

6.4. Restart simulations with cut out box and feedback

6.4.1. merger s1 box fb
The density map of the star distribution of the merger remnant of the restart run
indicates a very elliptical galaxy (6.18a, 6.18b, and 6.18c). The analysis of the A4/I0
parameter as a function of the radius as well as the analysis of the A4/I0 parameter as
a function of time at different radii supports this assumption. The parameter does not
reach negative values for los axis directions x and y (6.18d, 6.18g, and 6.18e, 6.18h).
For the los axis direction z (6.18f) negative values can be observed with a minimum
A4/I0 parameter of -0.04 for the inner most radius of the galaxy when looking at the
analysis of the A4/I0 parameter as a function of time. The analysis of the A4/I0
parameter as a function of the viewing angle reveals once more that the los axis does
not necessarily give rise to the most extreme A4/I0 value. One can see that the range
of the parameter can be from -0.3 to 0.1 in the most extreme case. The different ranges
for the different radii are however similar in range and do not differ significantly.

The dark matter distribution analysis can be seen in figure 6.21. The A4/I0 param-
eter of the los axis direction x is observed to be lowest for the middle of the galaxy
and higher for the outer as well as the inner part of the galaxy. Looking at the A4/I0
parameter of the los axis direction y no general trend can be observed whereas the
A4/I0 parameter for the los z is observed to be lowest for larger radii than smaller
radii. Generally the different values span a range of 0.1, 0.1, and 0.8 for the los axis
direction x, y, and z, respectively. The triaxiality of the halo as a function of time is
observed to be stable with one spike from the middle of the galaxy ranging from 0.9
to 1.1.

Because of the elliptically of the dark matter distribution as well as the stellar
distribution and the other analysis made above it seems to be unlikely that a merging
of two merger remnants with an inclination angle of 15◦ provides a possible solution
for the formation of LEDA 074886.

6.4.2. merger s2 box fb
The analysis of the stellar distribution of the merger simulation of two merger remnants
merged with an inclination angle of 15◦ is shown in figure 6.22. Looking at the density
distribution of the stars (6.22a, 6.22b, and 6.22c) the galaxy looks very much elliptical.
The analysis of the A4/I0 parameter as a function of the radius (6.22d, 6.22e, and 6.22f)
supports this picture specially for the los axis directions x and y where the parameter
values are all above zero. The same picture for those los axis direction arises when
looking at the evolution of the A4/I0 parameter with time (6.22g, and 6.22h) where
one can see that the parameter values never reach below zero. For the los axis direction
x the A4/I0 parameter as a function of radius fluctuates around zero, similar to the
analysis of the A4/I0 parameter as a function of time where the fluctuations are again
around zero more often being on the positive side. The analysis of the ranges of the
A4/I0 parameter as a function of the viewing angle reveals a similar picture where it
can be seen that the most negative number found is -0.1.
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(d) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in z direction.
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(g) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.
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(h) Analysis of the A4/I0 param-
eter as a function of time for
different radii in y direction.
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(i) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in z direction.
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(j) Analysis of the A4/I0 parame-
ter as a function of the different
viewing angle and the radii.

Figure 6.20.: Analysis of the stars from the restart simulation of a rotated, translated
and duplicated cut out box. Simulations were done with a 10% gas
fraction, feedback and the two rotation vectors pointing in the same
direction.
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(a) Density map of the dark mat-
ter praticles with los axis in x
direction.

(b) Density map of the dark mat-
ter praticles with los axis in y
direction.

(c) Density map of the dark mat-
ter praticles with los axis in z
direction.
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(d) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in y direction.

8.0 8.2 8.4 8.6 8.8 9.0 9.2
Time [Gyr]

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

A
4/
I 0

r1

r2

r3

r4

r5

r6

(f) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in z direction.

8.2 8.4 8.6 8.8 9.0
Time [Gyr]

0.85

0.90

0.95

1.00

1.05

1.10

T
ri

ax
[T

]

r1

r2

r3

r4

r5

r6

(g) Analysis of the triaxiality pa-
rameter as a function of time
for different radii.

Figure 6.21.: Analysis of the dark matter from the restart simulation of a rotated,
translated and duplicated cut out box. Simulations were done with a
10% gas fraction, feedback and the two rotation vectors pointing in the
same direction.
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6.4. RESTART SIMULATIONS WITH CUT OUT BOX AND FEEDBACK

The A4/I0 parameter as a function of radius for the dark matter distribution also
never reaches negative values for the los axis directions x and y. It is also mostly
positive for the los axis direction z. Looking at the triaxiality as a function of time
and taking the absolute value of the triaxiality one can see that whereas the inner part
is prolate the outer part is triaxial. Note that although the outer part of the dark
matter distribution is triaxial this did not lead to a boxy outer region in the stellar
distribution.

From the stellar analysis described above we can assume that the possibility that
two merger remnants with a rotation angle pointing at opposite directions merging
with an inclination angle of 15◦ is unlikely to have lead to the formation of LEDA
074886.
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6.4. RESTART SIMULATIONS WITH CUT OUT BOX AND FEEDBACK

(a) Density map of the stars with
los axis in x direction.

(b) Density map of the stars with
los axis in y direction.

(c) Density map of the stars with
los axis in z direction.
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(d) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of radius for
the los axis in z direction.
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(g) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.
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(h) Analysis of the A4/I0 param-
eter as a function of time for
different radii in y direction.
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(i) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in z direction.
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(j) Analysis of the A4/I0 parame-
ter as a function of the different
viewing angle and the radii.

Figure 6.22.: Analysis of the stars from the restart simulation of a rotated, translated
and duplicated cut out box. Simulations were done with a 10% gas
fraction, feedback and the two rotation vectors pointing in the opposite
direction.
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6.4. RESTART SIMULATIONS WITH CUT OUT BOX AND FEEDBACK

(a) Density map of the dark mat-
ter praticles with los axis in x
direction.

(b) Density map of the dark mat-
ter praticles with los axis in y
direction.

(c) Density map of the dark mat-
ter praticles with los axis in z
direction.
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(d) Analysis of the A4/I0 param-
eter as a function of time for
different radii in x direction.
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(e) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in y direction.
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(f) Analysis of the A4/I0 parame-
ter as a function of time for dif-
ferent radii in z direction.
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(g) Analysis of the triaxiality pa-
rameter as a function of time
for different radii.

Figure 6.23.: Analysis of the dark matter from the restart simulation of a rotated,
translated and duplicated cut out box. Simulations were done with a
10% gas fraction, feedback and the two rotation vectors pointing in the
opposite direction.
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7. Code

Within this thesis two main program projects have been developed. The first project
BELLE (Boxy ELLipse Extraction), written in Python, is a collection of smaller
programmes which analyse the boxiness of the galaxy. The main program is similar to
the task ELLIPSE in IRAF. In addition, the evolution of the boxiness of the galaxy,
triaxiality over time, and/or rotation angle of the line-of-sight axis can be studied.

The second project involved writing a new patch to generate initial conditions for
RAMSES simulations. It includes two patch subroutines for RAMSES. The new initial
conditions are generated by cutting out a cube of a given RAMSES output. If desired,
the cut out box can be duplicated, translated and rotated.

7.1. BELLE

The program BELLE (Boxy ELLipse Exraction) approximates the isophotes and
analyses the boxiness of a galaxy. It fits the isophotes using the Fourier series:

I (θ) = I0 +
∞∑
n=1

(An cosnθ +Bn sinnθ) (7.1)

where θ is the azimuthal angle and I0 the average intensity over the ellipse. The
A4 coefficient to the cos 4θ Fourier component is used to quantifying the isophotal
deviation from an ellipse and therefore gives a parameter to analyse the boxiness of
the galaxy. If the A4 parameter is positive (negative) the isophotes are said to be discy
(boxy). In figure 7.1, an example of a negative A4 parameter is shown in comparison
with a positive parameter. One has to be careful, however, as the ratio between the
other parameters Ai where i ∈ [1, 2, 3, 5, ..] as well as Bj with j ∈ [1, n] also depends
the shape of the isophotes.

BELLE is flexible in how it processes a map of a galaxy. Depending on the data
to process, one can choose between reading a general RAMSES output, FITS1 files,
or a test-case galaxy made with genMap.py. In each case, the settings in the make-
Contours.py program have to be changed accordingly.

• To read a RAMSES output, a generated map, directory, half-light-radius, as
well as the line-of-sight have to be given as an input. The map as well as the
profile can, for example, be generated with the Pymses package or with the
fortran routine within RAMSES. The program can then be started with

1For further Informations about the FITS Data Format read for example http://fits.gsfc.
nasa.gov/fits_primer.html.
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7.1. BELLE
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(a) Test map of with a positive A4 param-
eter. A1 = 0.1, A2 = 0.1, A3 = 0.1,
A4 = 10, A5 = 0.1, B1 = 0.1, B2 =
0.1, B3 = 0.1, B4 = 0.1, B5 = 0.1]
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(b) Test map of with a negativeA4 param-
eter. A1 = 0.1, A2 = 0.1, A3 = 0.1,
A4 = −100, A5 = 0.1, B1 = 0.1, B2 =
0.1, B3 = 0.1, B4 = 0.1, B5 = 0.1

Figure 7.1.: Comparison between a positive and negative A4 parameter. It can be
seen that a negative A4 parameter can lead to boxy isophotes whereas a
positive A4 parameter can lead to discy (round) isophotes.

python ˜/PythonProgrammes/BELLE/makeContours . py $map $ d i r $ r h l
$ l o s

The half-light radius is needed to calculate the maximum and minimum radius for
which the isophotes should be analysed. To be able to compare the experimental
results with the simulated results the maximum (minimum) radius rmax (rmin)
is calculated as

rmax = rmax p ∗ fhl rmin = rmin p ∗ fhl (7.2)

where rmax p (rmin p) is the maximum (minimum) radius given in the paper
used to analyse the isophotes and fhl is the ratio between the half-light-radius
of the observational results given in the paper and the half-light-radius of the
simulated galaxy. The half-light-radius has to be calculated from the cumulative
mass-profile of the galaxy where the half-light-radius is defined to be the radius
containing half of the mass of the cumulative profile.

• To generate and analyse a test map the program can be run for a given number
of Fourier parameters an, bn with the command

python ˜/PythonProgrammes/BELLE/makeContours . py $n $a 1 $a 2 $a 3
$a 4 $a 5 . . . $a n $b 1 $b 2 $b 3 $b 4 $b 5 . . .

where n is the number of parameters in this case. makeContours.py calls the
program genMap.py which outputs a matrix that represents a galaxy with a
known luminosity distribution and a known boxiness. It can be used to test the
program BELLE as well as combinations of Fourier parameters.
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7.1. BELLE

• To read the FITS files the python library pyFITS has been used. It can,
amongst other things, read the primary array of a FITS file and convert the
data into a python array that can further be processed. To analyse the boxiness
of the observational galaxy the program can be run with the command

python ˜/PythonProgrammes/BELLE/makeContours . py i . f i t s

The general outline of the program BELLE is the following
∗ read data , c a l l i t A
∗ make sure the re i s no zero in A otherwi s e g ive i t a smal l number
∗ take logar i thm of A, c a l l i t C
∗ smooth C
∗ get the contours o f C
∗ f i t the contours with e l l i p s e s
∗ get r e a l data ( no logar i thm data ) o f d e n s i t i e s a long the e l l i p s e
∗ f i t de ns i t y data along e l l i p s e with the Four i e r expansion
∗ get A 4 parameter
∗ get semi major ax is , major a x i s and other e l l i p s e parameter data

In figure 7.2 an example of the fitting process is shown for a simulated map whereas
in figure 7.3 an example is shown for the FITS map from a real galaxy. There are
four possible outputs from the program shown in figure 7.4. The program makeCon-
tours.py generates a map of the boxiness versus radius as shown in plot (a). Another
possibility is to plot the boxiness of the galaxy at different radii as a function of time
made with the program makeContoursTime.py as shown in (b). The plots shown in
(c) and (d) correspond to the boxiness as viewed from different angles. To uniformly
sample line-of-sight vectors, points x, y, z are uniformly sampled over a sphere by
choosing

x =
√

1− u2 cos θ (7.3)
y =

√
1− u2 sin θ

z = u

with θ ∈ [0, 2φ) and u ∈ [−1, 1]. Plot (c) shows the boxiness with respect to θ of six
different u at one radius. Since this picture is hard to analyse, a fourth picture (d)
was made. This picture shows the possible change of the boxiness as a function of
the different radii. The errorbars are calculated as the maximum and minimum of the
possible boxiness when varying θ and u. The results presented in this thesis will only
show plot (d) because of easier readability. The program makeTriax.py calculates
the triaxiality of the galaxy from projections along different axes. The triaxiality
parameter is defined as

T = a2 − b2

a2 − c2
(7.4)

where a, b, and c are the major, semi-major, and minor axis of the galaxy. The usual
technique to calculate the triaxiality is by diagonalising the inertia tensor, but since
makeContours.py already calculated the major, and semi-major axis of the different
ellipses at a given radius and line-of-sight axis, this information was used to calculate
T . A typical output of makeTriax.py is shown in plot (e) of figure 7.5.
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7.1. BELLE
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Figure 7.2.: Outline of the program BELLE. In the first picture a specific contour of
the galaxy map is shown. In the second picture a fit of the contour with
the ellipse is shown. In the third picture a fit of the density values along
the ellipse is shown.
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7.2. INITIAL CONDITIONS

Figure 7.3.: Example plots from the program BELLE using a FITS file of a real galaxy.
The upper-left picture shows a specific contour of LEDA. In the upper-
right, a fit of the contour with the ellipse is shown. In the lower-left, a fit
of the density values along the ellipse is shown.

7.2. Initial conditions

The new initial conditions subroutines is a patch that includes a new way to generate
initial AMR conditions. The patch is designed to cut out a cube of a RAMSES
output and then load it using the RAMSES starting routine. The new grid can be
translated, rotated, and replicated as many times as desired. Unlike the standard
starting procedure, the number of cores can be changed with this routine. To initialise
the patch, the &GALAXY DUP PARAMS namelist has to be added. An example
of the &GALAXY DUP PARAMS for duplicating a galaxy with a spacial separation
and an initial velocity is given below.
&GALAXY DUP PARAMS

r a d p r o f i l e=’ exponent i a l ’
z p r o f i l e=’ exponent i a l ’
g a l a x y r e p o s i t o r y=’ . . / m e r g e r s 1 f g a s 1 0 f b 3 / output 00121 / ’
s o u r c e g a l c e n t e r = 0 . 0 , 0 . 0 , 0 . 0
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7.2. INITIAL CONDITIONS

(a) Boxiness parameter as a function of
the radius. The upper picture shows
the A4/a parameter where the lower
picture shows the normalised A4/I0
parameter
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(b) Boxiness parameter as a function of
time for different radii.
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(c) Boxiness parameter as a function of
different viewing angles θ as a function
of u, as well as r.
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(d) Maximum and minimum boxiness pa-
rameter when changing the line-of-
sight. The viewing angle was chosen
uniformly over a sphere. The possi-
ble change of the boxiness parameter
is shown as a function of the radius.

Figure 7.4.: Representative outputs and maps of the simulations.

s o u r c e g a l r a d i u s =12.0
g a l c e n t e r 1 = 0 . 0 , 7 5 . 0 , 0 . 0
g a l c e n t e r 2 =0.0 ,−75.0 ,0 .0
g a l a x i s 1 =0 .0 , 1 . 0 , 1 . 504
g a l a x i s 2 =0 .0 , 1 . 0 , 1 . 504
Vgal1 =4.6752588471390348 ,−11.919618046329621 ,0.0
Vgal2 =−4.6752588471390348 ,11.919618046329621 ,0.0
V c i r c d a t f i l e 1=’ Vcirc1 . dat ’
V c i r c d a t f i l e 2=’ Vcirc2 . dat ’
i c p a r t f i l e g a l 1=’ i c p a r t 1 ’
i c p a r t f i l e g a l 2=’ i c p a r t 2 ’
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7.2. INITIAL CONDITIONS
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Figure 7.5.: Triaxiality parameter as a function of time for different radii.

Here, Vgal1 (Vgal2) is an initial velocity added to all particles, which can also
be set to zero. The specification about the size of the box size to cut out is given by
source gal radius. The ic part file gal1 (ic part file gal2) are the ini-
tial positions of the particles from the excised box. The Vcirc dat file1 (Vcirc dat file2)
are the circular velocities of the particles in the box which must be calculated in
advance. A further possible improvement of the patch is to combine the routines
generating the Vgal1, and ic part file gal1 files with the patch for the initial
gas distribution. If one only wants to restart a certain box, the parameters Vgal2,
Vcirc dat file2, and ic part file gal2 have to be set to zero. To compile the
RAMSES code the ’Galaxy DUplication OBJects’ (GDUPOBJ) have to be defined in
the Makefile
GDUPOBJ = amr2cube . o load amr . o amr2cube mem . o

and compiled with all the other object files
AMRLIB = $ (AMROBJ) $ (GDUPOBJ) $ (HYDROOBJ) $ (PMOBJ) $ (POISSONOBJ)

A pseudo-code version of the new initial conditions is given below:
! Load amr s t r u c t u r e at the beg inning
! (ONLY done once per cpu )
c a l l load amr ( r e p o s i t o r y , ramses s t ruc t , . . . )
! Load hydro v a r i a b l e s with in bounds
c a l l amr2cube mem ( ramses s t ruc t , input bounds , . . . )
! Loop over g iven s e t o f Mid−Points

! I n t e r p o l a t e input cube or a s s i g n a n a l y t i c f u n c t i o n
c a l l RTA( output c e l l s , input cube , output bounds , cente r s , . . . )

! Convert p r i m i t i v e to c o n s e r v a t i v e v a r i a b l e s
end subrout ine c o n d i n i t
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7.2. INITIAL CONDITIONS

Set of middle points dx

Loading AMR Structure

Loaded Box (Green Area)

Assign Input Cells with Output Cells

Figure 7.6.: Outline of the condinit pro-
gram in pictures.

In figure 7.6 the basic outline is also
seen in a picture. The initial condi-
tion routine in RAMSES calls the sub-
routine init flow fine which calls the
subroutine condinit with a set of cen-
ter points (Hilbert key), the conserva-
tive variables, the grid size (dx), and the
number of grid points. Within the ini-
tial condition routine of RAMSES, con-
dinit is called several times with differ-
ent Hilbert keys. At the beginning of
the condinit subroutine, load amr is
called which loads the AMR data from
disk and saves it in an amr structure
called ramses struct. This structure
contains all the important grid informa-
tion to obtain the hydro variables. In the
program, the input grid and the output
grid variables are separated:
type ( rea l bound ) : : galaxy bnd
type ( int bound ) : : ga laxy ibnd

type ( rea l bound ) : : amr bnd
type ( int bound ) : : amr ibnd

where galaxy bnd is the box in the in-
put grid to be extracted and amr bnd
are the bounds in the output grid. To
cut out a simple box, as is done for cal-
culations used for the simulations in this
thesis, the galaxy bnd may be the same
as the amr bnd (amr bnd is always in-
creased by dx on both sides for bound-
ary issues when doing the smearing de-
scribed later). One can also decide to
run in a second way where galaxy bnd
is not the same as the amr bnd as maybe
wanted for zoom simulations.

After the AMR structure is loaded,
the subroutine amr2cube mem is called
which extracts the hydro information
within the given bounds. Note that in
this version the entire cube within the bounds is extracted each time condinit is
called. The subroutines load amr and amr2cube mem are based on the program
amr2cube written by Romain Teyssier. The main difference is that with the new
separate routines, data is only read from disk once.
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7.2. INITIAL CONDITIONS

Once the box is loaded it can be processed in different ways including being trans-
lated, rotated, and replicated. An example of one translated and rotated box is given
below. To assign the right hydro variables to the right grid cells from the output box
to the input box the subroutine RTA (Rotate, Translate, Assign) is called
subroutine RTA( output c e l l s , input cube , output bounds , cente r s , phi ,

Axis )
c a l l t r a n s l a t e ( input cube , g a l c e n t e r s )
c a l l r o t a t e ( input cube , phi , Axis )
! Assign t r a n s l a t e d input cube to output cube and hydro v a r i a b l e s i f

p i x e l i s in box

An input and corresponding output can be seen in figure 7.7. The new patch is

Figure 7.7.: Cut out Input box gets translated, rotated, and duplicated and set as new
initial conditions for a new simulation.

currently only programmed such that the cell sizes must be the same in both the output
box as well as the input box. The routine could therefore be improved to allow varying
cell sizes. Another improvement for the future would be to call amr2cube mem only
once per each cell when looping over a given set of center points instead of loading the
whole box each time condinit is called.
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8. Code Tests

In this chapter, we review a series of tests performed on each of the programs de-
veloped during this thesis. For BELLE, the boxiness recovery was tested with a fake
galaxy generated with a known boxiness. The initial conditions patches were tested by
comparing a Sedov 3d simulation with a restart run. We also demonstrate the ability
to rotate, translate, and duplicate a region of the AMR grid. We additionally show
the feature allowing a region to be extracted from the AMR grid and resimulated in
isolation.

8.1. BELLE

To test the recovery of the boxiness of an input galaxy, a fake galaxy with a known
boxiness was generated using the program genMap.py. A test with a positive A4 = 10
parameter is shown in figure 8.1, and a test with a negative A4 = −10 parameter is
shown in figure 8.2. In general, it can be seen that the boxiness is overestimated for
small radii, but at larger radii the calculated A4 parameter agrees better with the
actual boxiness parameter. When interpreting the boxiness of the simulated galaxies
one can generally assume that at large radii the calculated value has a smaller errorbar
than at small radii. This is good since we particularly want to look at the boxiness
parameter at large radii.

8.2. Initial conditions

8.2.1. Sedov 3d run
To test the initial conditions patches, the Sedov 3d test in RAMSES was run. First,
the initial run was made from time ti to te. Second, at some time tr ∈ (ti, te) the
initial run was restarted. The restart simulation was run from time tr to te. The
mesh information at the first output after tr was compared with the same information
from the same time from the first complete run. The last output of both simulations
at time te were also compared. Comparing the node information from the initial run
with the restart run one can see that it is possible to change the number of nodes
when restarting the simulation. Comparing the mesh structure at the time of restart
tr in the initial run and the restart run at tr one can see small deviations. These
deviations can be explained with the slightly different time stepping between the two
runs. Comparing the mesh structure of the initial run at time te of the simulation with
the mesh structure at time te of the restart run one can again see some deviations.

82
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Figure 8.1.: Test of the boxiness analysis with a positive A4 parameter. In both pic-
tures the blue dots are the calculated parameters whereas in the upper
picture the red dots are the actual values and in the lower picture the
green line is the actual boxiness parameter.

These can be explained with the slight deviations at the beginning of the run. However,
it is important to note that the differences do not start to deviate from each other and
that the two mesh structures at time te still are comparable with each other. In figure
8.3 one can see the first output after time te of the initial run and the restart run.
Looking closely at the grid structure one can see some minor deviations. A similar
situation arises when looking at the last outputs at time te of the initial run as well
as the restart run. Looking at the level map as well as the temperature map in figure
8.3, however, one can hardly see any deviations.

Initial Run

Node information
#! / b in / bash

#SBATCH −t 1−0:00:00 −−mem=64000
#SBATCH −−ntasks=64
#SBATCH −−ntasks−per−node=4
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Figure 8.2.: Test of the boxiness analysis with a negative A4 parameter. In both pic-
tures the blue dots are the calculated parameters whereas in the upper
picture the red dots are the actual values and in the lower picture the
green line is the actual boxiness parameter.

Grid information
&AMR PARAMS
leve lmin=4
levelmax=8
ngridmax=1000000
npartmax=2000000
n g r i d t o t =3000000
nexpand=1
boxlen =0.5
/

Restart Run

Node information
#!/ bin / bash

#SBATCH −t 1−0:00:00 −−mem=64000
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8.2. INITIAL CONDITIONS

#SBATCH −−ntasks=32
#SBATCH −−ntasks−per−node=2

Grid and Box information
&AMR PARAMS
leve lmin=4
levelmax=8
ngridmax=1000000
npartmax=2000000
n g r i d t o t =3000000
nexpand=1
boxlen =0.5
/

&GALAXY DUP PARAMS
r a d p r o f i l e=’ exponent i a l ’
z p r o f i l e=’ exponent i a l ’
g a l a x y r e p o s i t o r y=’ /zbox/ data / r b i e r i /MASTERTHESIS/ c o n d i n i t t e s t / sedov /

output 00025 / ’
s o u r c e g a l c e n t e r = 0 . 0 , 0 . 0 , 0 . 0
s o u r c e g a l r a d i u s =0.25
g a l c e n t e r 1 = 0 . 0 , 0 . 0 , 0 . 0
g a l c e n t e r 2 = 0 . 0 , 0 . 0 , 0 . 0
g a l a x i s 1 = 0 . 0 , 0 . 0 , 1 . 0
g a l a x i s 2 = 0 . 0 , 0 . 0 , 1 . 0
Vgal1 = 0 . 0 , 0 . 0 , 0 . 0
Vgal2 = 0 . 0 , 0 . 0 , 0 . 0
V c i r c d a t f i l e 1=’ Vcirc1 . dat ’
V c i r c d a t f i l e 2=’ Vcirc2 . dat ’
i c p a r t f i l e g a l 1=’ i c p a r t 1 ’
i c p a r t f i l e g a l 2=’ i c p a r t 2 ’
/

Comparison between Initial run and Restart run

Mesh structure of the initial run at the time the simulation got restarted
tr.

Load ba lanc ing AMR g r i d . . .
Mesh s t r u c t u r e
Leve l 1 has 1 g r i d s ( 0 , 1 , 0 , )
Leve l 2 has 8 g r i d s ( 0 , 1 , 0 , )
Leve l 3 has 64 g r i d s ( 0 , 3 , 1 , )
Leve l 4 has 512 g r i d s ( 3 , 15 , 8 , )
Leve l 5 has 4096 g r i d s ( 29 , 116 , 64 , )
Leve l 6 has 32672 g r i d s ( 235 , 928 , 510 , )
Leve l 7 has 215247 g r i d s ( 1883 , 5328 , 3363 , )
Leve l 8 has 472063 g r i d s ( 4941 , 9170 , 7375 , )
Main step= 2940 mcons=−4.44E−16 econs =−1.33E−15 epot= 0.00E+00 ek in=

1.25E−01
Fine s tep= 2940 t= 4.89527E−01 dt= 1.607E−04 a= 1.000E+00 mem= 1.8%
Time e lapsed s i n c e l a s t co a r s e s tep : 0.74289202690124512
Used memory : 1 . 2 Gb

Mesh structure at the beginning of the restarted run at time tr
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8.2. INITIAL CONDITIONS

I n i t i a l mesh s t r u c t u r e
Leve l 1 has 1 g r i d s ( 0 , 1 , 0 , )
Leve l 2 has 8 g r i d s ( 0 , 1 , 0 , )
Leve l 3 has 64 g r i d s ( 1 , 4 , 2 , )
Leve l 4 has 512 g r i d s ( 11 , 25 , 16 , )
Leve l 5 has 4096 g r i d s ( 89 , 197 , 128 , )
Leve l 6 has 32672 g r i d s ( 711 , 1571 , 1021 , )
Leve l 7 has 215085 g r i d s ( 5380 , 9946 , 6721 , )
Leve l 8 has 472063 g r i d s ( 10907 , 16353 , 14751 ,)
S t a r t i n g time i n t e g r a t i o n
Load ba lanc ing AMR g r i d . . .
Fine s tep= 0 t= 0.00000E+00 dt= 1.607E−04 a= 1.000E+00 mem= 3.5%

Mesh structure at the initial run at the end of the simulation te.
Mesh s t r u c t u r e
Leve l 1 has 1 g r i d s ( 0 , 1 , 0 , )
Leve l 2 has 8 g r i d s ( 0 , 1 , 0 , )
Leve l 3 has 64 g r i d s ( 0 , 4 , 1 , )
Leve l 4 has 512 g r i d s ( 2 , 26 , 8 , )
Leve l 5 has 4096 g r i d s ( 15 , 207 , 64 , )
Leve l 6 has 27850 g r i d s ( 119 , 1273 , 435 , )
Leve l 7 has 86887 g r i d s ( 931 , 1994 , 1357 , )
Leve l 8 has 178146 g r i d s ( 1237 , 3583 , 2783 , )
Main step= 4690 mcons= 2.22E−16 econs =−1.44E−15 epot= 0.00E+00 ek in=

1.25E−01
Fine s tep= 4690 t= 9.95978E−01 dt= 5.488E−04 a= 1.000E+00 mem= 0.9%

Mesh structure at the restart run at the end of the simulation te.
Mesh s t r u c t u r e
Leve l 1 has 1 g r i d s ( 0 , 1 , 0 , )
Leve l 2 has 8 g r i d s ( 0 , 1 , 0 , )
Leve l 3 has 64 g r i d s ( 0 , 5 , 2 , )
Leve l 4 has 512 g r i d s ( 4 , 39 , 16 , )
Leve l 5 has 4096 g r i d s ( 34 , 310 , 128 , )
Leve l 6 has 27850 g r i d s ( 276 , 1908 , 870 , )
Leve l 7 has 86887 g r i d s ( 2176 , 3421 , 2715 , )
Leve l 8 has 178153 g r i d s ( 3615 , 6807 , 5567 , )
Main step= 1750 mcons= 2.22E−16 econs= 4.44E−16 epot= 0.00E+00 ek in=

1.25E−01
Fine s tep= 1750 t= 5.06451E−01 dt= 5.488E−04 a= 1.000E+00 mem= 1.5%
Time e lapsed s i n c e l a s t co a r s e s tep : 0.63109993934631348
Used memory : 1 . 1 Gb

8.2.2. Translation, Rotation, and Duplication
In figure 8.5 an example of a translation, rotation and duplication of a galaxy is shown.

8.2.3. Zoom into a Cosmo Run
An output from Davide Martizzi’s cosmology run was taken and zoomed in to check
whether such a process is in principle feasible. The full picture as well as the zoomed
in version can be seen in figure 8.6.
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8.2. INITIAL CONDITIONS

(a) First output after time tr of the initial
run, boxlen=0.5

(b) First output of the restart run after
time tr, boxlen=0.5

(c) Last output of the initial run at time
te, boxlen=0.5

(d) Last output of the restart run at time
te, boxlen=0.5

Figure 8.3.: Represantive outputs of the initial run and the restart run at time tr, and
te.
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8.2. INITIAL CONDITIONS

(a) Level map of the initial run at time tr,
boxlen=0.5

(b) Level of the restart run at time tr,
boxlen=0.5

(c) Temperature map of the initial run at
time tr, boxlen=0.5

(d) Temperature map of the restart run at
time tr, boxlen=0.5

Figure 8.4.: Represantive level and temperature maps of the initial run and the restart
run at time tr.
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8.2. INITIAL CONDITIONS

(a) Initial Output from which a box was
cut out containing the galaxy.

(b) Restart where the cut out box got
translated, rotated, and duplicated
during the new initial condition pro-
cess.

Figure 8.5.: A translation, rotation, and duplication of a cut out box. The initial
output can be seen as well as the new initial condition after the translation,
rotation, and duplication.

(a) Initial Output from the cosmo run. (b) Restart where a smaller box was cut
out and put into as a new restart.

Figure 8.6.: A zoom in example of the initial condition routine. The initial output can
be seen as well as the new initial condition after the zooming.
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9. Conclusion
Motivated by the observation of LEDA 074886 (Graham et al., 2012) a number of
simulations have been performed to better understand the possible formation scenario.
Merger simulations have been performed with a varying gas fraction of 10%, 15%, and
20% as well as with rotation axes pointing in the same and opposite directions. The
detailed discussion about the individual simulations can be read in the chapter.

Generally speaking, the merger remnants of two galaxies with rotation axis pointing
opposite to each other show more fluctuations in the A4/I0 parameters indicating that
those galaxies are less relaxed as the remnants calculated with rotation axis pointing
in the same direction. They are also observed to be more disky in appearance when
comparing them with the simulations with rotation axis pointing in the same direction.
An exception of this trend is in the simulation performed with the new initial condition
code. Two merger remnants from a previous feedback run were merged together with
rotation axis pointing in the same as well as opposite direction. The remnants from
those simulations both result in an elliptical galaxy where only one significant difference
between the two simulations can be observed: The triaxiality parameter for the dark
matter halo surrounding the galaxies of the simulation with the two rotation axis
pointing opposite of each other shows a triaxial dark matter distribution whereas the
triaxiality parameter of the simulation with the rotation axis pointing in the same
direction show a prolate dark matter distribution.

We also tested the assumption of Jesseit et al. (2005) regarding different viewing
angles. We observed that, unlike their claim, the line-of-sight along the principal
axes does not always show the most extreme cases of the boxiness A4 parameters. In
fact, the boxiness parameter can vary significantly when looking at the galaxy from
different angles. Generally a negative A4 coefficient can be found for the majority of
the merger remnants. It is, however, noteworthy that most of the resulting remnants
did not show the desired features of a discy inner region and a boxy outer part even
when varying the different viewing angles. Unlike other authors (e.g., Jesseit et al.,
2005) a significant change between the different gas fractions was not observed with
the simulations presented here.

There is, however, one specific example where the analysis has shown a discy inner
region with a boxy outer part. This remnant resulted from the simulation of a feedback
run with a gas fraction of 10% and the two rotation axes pointing in the same direction.
Given the similar properties analysed for LEDA 074886 and the simulated galaxy we
can assume that merging two galaxies with a low mass fraction and rotation axis
pointing in the same direction could have led to the formation of LEDA 074886. The
simulations leading to the formation of a rectangular galaxy were performed with
a feedback mechanism and it can be assumed that this feedback mechanism played
an important role in the formation of the rectangular merger remnant. The exact

90



influence however still has to be studied in further detail. When observing the halo
structure of the dark matter particles around the galaxy one notices a slightly triaxial
halo at the time the two galaxies merged. This barely triaxial halo can be understood
to support the building of the boxy galaxy. Whereas the prolate halo observed in
the middle phase might be responsible for the stability also observed of the galaxy.
Further analysis to test this hypothesis again has to be carried out in more detail.

91



Appendices

92



A. Sphere Point Picking

To uniformly pick points such that the sphere is uniformly distributed is has to be
with U ∈ (0.1) and V ∈ (0.1):

θ = 2πu (A.1)
φ = cos−1(2v − 1) (A.2)

This gives the spherical coordinated for a set of points which are uniformly dis-
tributed over S2. It is such since the differential element of the solid angle is given
by

dΩ = sinφdθdφ = −dθd(cosφ)

The distribution Pφ of polar angles can be found from

Pφdφ = Pν

∣∣∣∣dνdφ
∣∣∣∣ dφ (A.3)

by taking the derivative of A.2 with respect to ν and solving it for ν and plugging
the result into equation A.3 with Pν = 1 to finally obtain the distribution

Pφ = 1
2 sinφ

By substitution of u = cosφ to be uniformly distributed (from which wwe have
ddu = sinφdφ one obtains the poins

x =
√

1− u2 cos θ (A.4)
y =

√
1− u2 sin θ (A.5)

z = u (A.6)

with θ ∈ [0, 2φ) and u ∈ [−1, 1] which also is uniformly distributed over S2.
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B. PYMSES routines
Here is an example of how to generate a gas map with Pymses from an RAMSES
output.
#This l i n e must come b e f o r e o ther m a t p l o t l i b ( py lab ) imports
from f u t u r e import d i v i s i o n
from matp lo t l i b import rc
import numpy as np
import pylab as p l
import s c i p y as sc
import s c i p y . f f t p a c k
from math import atan2
import math
import numpy
import sys
from os import path
import pymses
from pymses . a n a l y s i s . v i s u a l i z a t i o n import ∗
from pymses import RamsesOutput
from pymses . u t i l s import cons tant s as C
import os . path

#import p y f i t s as p f

rc ( ’ t ex t ’ , usetex=True )
rc ( ’ f ont ’ , ∗∗{ ’ f ami ly ’ : ’ s e r i f ’ , ’ s e r i f ’ : [ ’ Computer Modern Roman ’ ] } )

# Ramses data
fname = sys . argv [ 1 ]
print >>sys . s tde r r , ’ Reading Data o f ’ , sys . argv [ 1 ]
#i o u t p u t = raw input (” Enter output : ”)
i output = sys . argv [ 2 ]
ioutput = i n t ( ioutput )
ro = RamsesOutput ( fname , ioutput )
amr = ro . amr source ( [ ” rho ” , ”P” ] )
xc = f l o a t ( sys . argv [ 3 ] )
yc = f l o a t ( sys . argv [ 4 ] )
zc = f l o a t ( sys . argv [ 5 ] )
ax = f l o a t ( sys . argv [ 6 ] )
ay = f l o a t ( sys . argv [ 7 ] )
az = f l o a t ( sys . argv [ 8 ] )
up vector=sys . argv [ 9 ]
r s1 = f l o a t ( sys . argv [ 1 0 ] )
r s2 = f l o a t ( sys . argv [ 1 1 ] )
print rs1 , r s2

fname = os . path . s p l i t ( os . path . normpath ( fname ) ) [−1]

# Map operator : mass−weighted d e n s i t y map
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up func = lambda dset : ( dset [ ” rho ” ]∗∗2 ∗ dset . g e t s i z e s ( ) ∗∗3)
down func = lambda dset : ( dset [ ” rho ” ] ∗ dset . g e t s i z e s ( ) ∗∗3)
s c a l f u n c = Fract ionOperator ( up func , down func )

# Map reg ion
c e n t e r = [ xc , yc , zc ]
axes = {” l o s ” : np . array ( [ ax , ay , az ] ) }

# Map proces s ing
mp = f f t p r o j e c t i o n . MapFFTProcessor (amr , ro . i n f o )
for axname , a x i s in axes . i tems ( ) :

cam = Camera ( c e n t e r=center , l i n e o f s i g h t a x i s=axis , up vector=
up vector , r e g i o n s i z e =[ rs1 , r s2 ] , map max size =512)

map = mp. p r o c e s s ( s c a l f u n c , cam , m u l t i p r o c e s s i n g=False )
f a c t o r = ro . i n f o [ ” u n i t d e n s i t y ” ] . expre s s (C. H cc )
s c a l e = ro . i n f o [ ” u n i t l e n g t h ” ] . expre s s (C.Mpc)

#p l . imshow (map)
#p l . x l a b e l ( ’ x ’ )
#p l . y l a b e l ( ’ y ’ )

#Save map i n t o HDF5 f i l e
mapname = ” g a s d e n s i t y %s o u t%03 i a x %03 i a y %03 i a z %03 i r s 1 %04

i r s 2 %04 i u v%s ”%(fname , ioutput , ax , ay , az , r s1 ∗1000 , r s2
∗1000 , up vector )

h5fname = save map HDF5 (map, cam , map name=mapname)

#Save map in t x t f i l e
with open ( ’mapNames . dat ’ , ’ a ’ ) as m y f i l e :

m y f i l e . wr i t e (mapname+’ \n ’ )
np . save txt (mapname , map)

# Plot map i n t o M a t p l o t l i b f i g u r e /PIL Image
f i g = save HDF5 to plot ( h5fname , map unit=(”H/ cc ” , f a c t o r ) ,

a x i s u n i t =(”Mpc” , s c a l e ) , cmap=” j e t ” )

print >>sys . s tde r r , mapname
f i g . s a v e f i g (mapname)

#p l . show ()

Where here is an example of how to generate a stellar distribution map as well as a
dark matter distribution map with Pymses from a RAMSES output.
#This l i n e must come b e f o r e o ther m a t p l o t l i b ( py lab ) imports

#from f u t u r e import d i v i s i o n
#from m a t p l o t l i b import rc
from numpy import array , log10
import numpy as np
import pylab as p l
import s c i p y as sc
from pymses . a n a l y s i s . v i s u a l i z a t i o n import ∗
from pymses import RamsesOutput
from pymses . u t i l s import cons tant s as C
import sys
import os . path

#rc ( ’ t e x t ’ , u se t ex=True )
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#rc ( ’ f o n t ’ , ∗∗{ ’ f ami ly ’ : ’ s e r i f ’ , ’ s e r i f ’ : [ ’ Computer Modern Roman ’ ]} )

# Ramses data
fname = sys . argv [ 1 ]
print >>sys . s tde r r , ’ Reading Data o f ’ , sys . argv [ 1 ]
#i o u t p u t = raw input (” Enter output : ”)
i output = sys . argv [ 2 ]
ioutput = i n t ( ioutput )
ro = RamsesOutput ( fname , ioutput )
par t s = ro . p a r t i c l e s o u r c e ( [ ”mass” , ” l e v e l ” , ” epoch ” ] )
mass cut = 3 .1E−06
xc = f l o a t ( sys . argv [ 3 ] )
yc = f l o a t ( sys . argv [ 4 ] )
zc = f l o a t ( sys . argv [ 5 ] )
ax = f l o a t ( sys . argv [ 6 ] )
ay = f l o a t ( sys . argv [ 7 ] )
az = f l o a t ( sys . argv [ 8 ] )
up vector=sys . argv [ 9 ]
r s1 = f l o a t ( sys . argv [ 1 0 ] )
r s2 = f l o a t ( sys . argv [ 1 1 ] )

fname = os . path . s p l i t ( os . path . normpath ( fname ) ) [−1]

# Map operator : mass
s c a l f u n c s = Sca larOperator (lambda dset : dset [ ”mass” ] ∗ ( dset [ ” epoch ” ]

> 0 . 0 )+dset [ ”mass”]<mass cut )
sca l func dm = ScalarOperator (lambda dset : dset [ ”mass” ] > mass cut )

# Map reg ion
c e n t e r = [ xc , yc , zc ]
axes = {” l o s ” : np . array ( [ ax , ay , az ] ) }

mp = f f t p r o j e c t i o n . MapFFTProcessor ( parts , ro . i n f o )

i f 1 :
for axname , a x i s in axes . i tems ( ) :

cam = Camera ( c e n t e r=center , l i n e o f s i g h t a x i s=axis , up vector=
up vector , r e g i o n s i z e =[ rs1 , r s2 ] , \

d i s t a n c e =2.0E−1, f a r c u t d e p t h =2.0E−1,
map max size =512)

map s = mp. p r o c e s s ( s c a l f u n c s , cam , s u r f q t y=True )
map dm = mp. p r o c e s s ( sca l func dm , cam , s u r f q t y=True )
print ( ’ type ( ro . i n f o [ ” u n i t l e n g t h ” ] ’ , ro . i n f o [ ” u n i t l e n g t h ” ] )
print ( ’ type ( ro . i n f o [ ” unit mass ” ] ’ , ro . i n f o [ ” unit mass ” ] )
f a c t o r = ( ro . i n f o [ ” unit mass ” ] / ro . i n f o [ ” u n i t l e n g t h ” ] ∗ ∗ 2 ) . expre s s

(C. Msun/C. kpc ∗∗2)
s c a l e = ro . i n f o [ ” u n i t l e n g t h ” ] . expre s s (C.Mpc)

# Save map i n t o HDF5 f i l e
mapname s = ” s t a r d e n s i t y %s o u t%03 i a x %03 i a y %03 i a z %03 i r s 1 %03

i r s 2 %03 i u v%s ”%(fname , ioutput , ax , ay , az , r s1 ∗100 , r s2
∗100 , up vector )

mapname dm = ” darkMatte r dens i ty %s o u t%03 i a x %03 i a y %03 i a z %03
i r s 1 %03 i r s 2 %03 i u v%s ”%(fname , ioutput , ax , ay , az , r s1 ∗100 ,

r s2 ∗100 , up vector )
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h5fname s = save map HDF5 ( map s , cam , map name=mapname s )
h5fname dm = save map HDF5 (map dm , cam , map name=mapname dm)

# Plot map i n t o M a t p l o t l i b f i g u r e /PIL Image
f i g s = save HDF5 to plot ( h5fname s , map unit=(”$M {\ odot } . kpc

ˆ{−2}$” , f a c t o r ) , a x i s u n i t =(”Mpc” , s c a l e ) , cmap=” j e t ” )
f ig dm = save HDF5 to plot ( h5fname dm , map unit=(”$M {\ odot } . kpc

ˆ{−2}$” , f a c t o r ) , a x i s u n i t =(”Mpc” , s c a l e ) , cmap=” j e t ” )

f i g s . s a v e f i g ( mapname s )
f ig dm . s a v e f i g (mapname dm)
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