

A new era of neutrino physics at colliders: the SND@LHC experiment

Martina Ferrillo (martina.ferrillo@physik.uzh.ch)

Swiss National Science Foundation

ECC UNIT [1, 2]

1 - Scattering and Neutrino Detector

The SND@LHC is a neutrino experiment approved by CERN on March, 2021.

Installed and commissioned in *less* than 1 year, it is now taking data during the LHC Run3.

The experiment is located in the TI18 tunnel, ca. 480 m away from the ATLAS collision point.

Neutrinos and exotic particles produced in ATLAS collisions travel undisturbed to SND@LHC, where they are later detected.

In SND@LHC angular acceptance $7.2 < \eta < 8.4$ neutrinos come mostly from charm decays.

5 - First data and early measurements

- Electronic detectors measurements:
- Passing muons and muon-induced background rates in TI18
- First observation of neutrino interactions at a collider experiment
- Nuclear emulsions analysis:
 - 0.5 fb⁻¹ of data collected in the period April-July 2022 is now being analysed
 - Evaluate the background and define emulsion replacement strategy

SND@LHC detector

2 - Detector concept

GOAL identifying all the neutrino flavours

SOLUTION hybrid detector

1. Neutrino Target and vertex detector

- Emulsion Cloud Chamber (ECC) using tungsten as passive material.

 2. ECAL
- Scintillating Fiber tracker (SciFi). Time stamp and electromagnetic showers energy measurement
- 3. HCAL + Muon identification system
- ▶ iron walls + scintillators
- Veto and Downstream to tag penetrating muons

3 - Physics program

	$\langle E \rangle$ [GeV]	tot. NC	tot. CC
$\nu_e + \bar{\nu}_e$	265	146	450
$ u_{\mu} + \bar{\nu}_{\mu}$	122.5	467	1447
$ u_{\tau} + \bar{\nu}_{\tau} $	390	13	34
	$\nu_e + \bar{\nu}_e$ $\nu_\mu + \bar{\nu}_\mu$	$\begin{array}{c c} \nu_e + \bar{\nu}_e & 265 \\ \hline \nu_\mu + \bar{\nu}_\mu & 122.5 \end{array}$	$ u_{\mu} + \bar{\nu}_{\mu} \qquad 122.5 \qquad 467 $

- Measurement of the $pp \rightarrow \nu_e + X$ cross-section
 - u_e flux used as a probe of charm quark production
 - \mathbf{QCD} : constrain the gluon PDF with data at small x
 - Lepton flavour universality test with ν_e/ν_{τ} and ν_e/ν_{μ}

4 - Backgrounds

- Passing muons from the ATLAS interaction point. Predicted muon flux of $\sim 350\,\mathrm{Hz}$ in acceptance.
- Muon-induced: neutral particles (n, K) generated from Deep Inelastic Scattering of muons in the rock surrounding the detector with a signal-like topology.

6 - Beyond Run3: Advanced SND

Advanced SND is an upgraded prototype of SND@LHC in view of Run4 data-taking

- Extended physics case and wider angular coverage with two detectors
 - AdvSND-Near $(4 < \eta < 5)$
 - AdvSND-Far $(7.2 < \eta < 8.4)$
- Improved detector layout and new technologies
 - Silicon pixel vertex detector
 - Muon magnetic spectrometer for momentum and charge measurement

References and resources:

[1] OPERA Collaboration, Discovery of τ neutrino appearance in the CNGS neutrino beam with the opera experiment, Phys. Rev. Lett. 115, 121802, September 2015

RECONSTRUCTED TRACKS IN 1 cm^2 , $L = 0.5 \text{ fb}^{-1}$

- [2] OPERA Collaboration, Final Results of the OPERA Experiment on $\nu_{ au}$ appearance in the CNGS Neutrino Beam, Phys. Rev. Lett. 120, 211801, April 2018
- [3] M. Bustamante et al., Extracting the Energy-Dependent Neutrino-Nucleon Cross Section above 10 TeV Using IceCube Showers, Phys. Rev. Lett. 122, 041101, January 2019
- [4] SND@LHC Scattering and Neutrino Detector at the LHC, Technical Proposal, LHCC-P-016, February 2021

