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The condensed matter theory group studies topological
phenomena in electronic systems. Numerical and analyt-
ical tools are used to model phases of matter and under-
stand their unique physical properties. The term topol-
ogy refers to a field of mathematics that is concerned
with the relations of objects to each other if one allows
for smooth deformations of these objects. Objects that can
be transformed into each other by smooth deformations
are said to be topologically equivalent. For example, one
can smoothly deform a donut into a coffeecup but not a
donut into a muffin. Thus a donut and a muffin are topo-
logically different. Applying the same concepts to phases
of quantum matter yields phenomena that are universal
and surprisingly robust to perturbations. They are often
related to measurable observables which are universally
quantized, such as the Hall conductivity in the integer
quantum Hall effect.

Topological systems can be strongly interacting, in
which case we are often interested in phenomena re-
lated to so-called topological orders. Topologically or-
dered phases of matter are best understood in quasi two-
dimensional systems with an energy gap at zero temper-
ature, and are characterized by emergent fractionalized
excitations. These so-called anyons could be used in fu-
ture quantum computing devices. Our research group is
mostly interested in a conceptual understanding of topo-
logical order and its generalization, for example to three
dimensions. One of the projects completed this year [1]
is concerned with possible phase transitions in topologi-
cally ordered states with anyonic excitations. In particu-
lar we showed that in many cases anyons with bosonic
self-statistics cannot undergo a Bose-Einstein condensa-
tion transition. This results hints at a certain phase stabil-
ity of states with uncondensable bosons.

We also study weakly or non-interacting systems,
in which case interesting topological phenomena result
from the band theory of solids. Such topological band
characterizations were first discovered for insulating sys-
tems. The classic example in this category is the in-
teger quantum Hall effect with its quantized topolog-
ical Hall conductivity. It was recently joined by time-
reversal symmetric insulators with topological prop-
erties. All of these systems are defined by the exis-
tence of boundary modes which cannot be removed
by boundary perturbations that respect the symme-
tries protecting the topological character, such as time-
reversal symmetry. Time-reversal symmetric topologi-
cal insulators exist in two and three spatial dimen-
sions and are characterized by a single Kramers pair

mensions and are characterized by a single Kramers pair
of edge modes and a single, non-degenerate Dirac surface
state, respectively.

More recently, the notion of topological band struc-
tures was extended from insulators to metals and
semimetals. This direction of research characterizes
symmetry-protected degeneracies in momentum space
by topological numbers, showing that they are generic
and can be robust against a large class of perturbations.
The degeneracies can be point-like, giving rise to so-
called Weyl or Dirac semimetals, or line-like, resulting
in so-called nodal-line semimetals. Below we discuss in
more detail a project [2] which defined a new class of such
topological semimetals.

We have also entertained a series of experimental
collaborations over the last year [3], [4], [5], of which
the study of spin-polarized channels on the surface
step edges of a so-called crystalline topological insula-
tor stands out [5]. These one-dimensional edge channels
are well localized, extremely robust against disorder, ele-
vated temperatures, and magnetic fields.

[1] T. Neupert et al., No-Go Theorem for Boson Conden-

sation in Topologically Ordered Quantum Liquids,

New Journal of Physics 18, 123009 (2016).

[2] L. Muechler, A. Alexandradinata, T. Neupert, R. Car,

Topological Nonsymmorphic Metals from Band Inver-

sion, Phys. Rev. X 6, 041069 (2016).

[3] D. Sutter et al., Hallmarks of Hund’s coupling in the

Mott insulator Ca2RuO4, Nature Comm. (2017).

[4] P. K. Biswas et al., Suppression of magnetic excita-

tions near the surface of the topological Kondo insulator

SmB6, Phys. Rev. B 95, 020410(R) (2016).

[5] P. Sessi et al., Robust spin-polarized midgap states at

step edges of topological crystalline insulators,

Science 354, 1269-1273 (2016).

[6] M. Laubach et al., Density wave instabilities and surface

state evolution in interacting Weyl semimetals,

Phys. Rev. B 94, 241102(R) (2016).

11.1 Nonsymmorphic topological metals

A large part of the activities in the condensed matter theory

group was concerned with the exploration of new types of

topological metals and semimetals over the past year. Topo-

logical metals display various intriguing physical properties,

such as protected modes on the surface of the crystal and

record-high changes in the resistivity when a magnetic field

is applied (“titanic magnetoresistance”) [7].
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Fig. 11.1 – Nonsymmorphic semimetals. a) One-dimensional
lattice with symmorphic (left) and nonsymmorphic (right)
symmetry. The nonsymmorphic symmetry is a combination
of translation and mirror reflection. b) Energy dispersion
of a strongly Lorentz-violating Dirac fermion for which the
velocity of both branches of the dispersion have the same
sign for some direction of propagation. As a consequence,
the Dirac point is a symmetry-protected touching point of
a electron and a hole pocket (lower panels).

In a collaboration with researchers from Yale and Princeton,

we proposed a new class of topological metals with a type

of symmetry that is abundantly found in crystals, namely a

nonsymmorphic symmetry [8]. This class of metals is topo-

logical in the sense of being robust to both deformations by

the external environment, as well as to more microscopic de-

formations within the crystal itself.

A close look at the symmetries of a crystal, such as ro-

tations, reflections, and translations, shows that crystals di-

vide in two classes, called symmorphic and nonsymmorphic.

Symmorphic crystals transform into themselves under dis-

crete translations by the lattice period, rotations and reflec-

tions. Just as abundant in nature are nonsymmorphic crystals,

which transform into themselves under symmetry operations

that combine a rotation or a reflection with a translation by

a fraction of the lattice period. As illustrated in Fig. 11.1 a),

the left image has symmorphic symmetry, while the right im-

age is nonsymmorphic, that is, under a reflection with respect

to the horizontal bisecting line, combined with a translation

by half the lattice period, the image returns to itself.

Nonsymmorphic symmetries lead to fundamentally differ-

ent arrangements of the atoms in a crystal, which in turn have

a profound influence on their electronic properties. Indeed,

crystals with the nonsymmorphic symmetry of Fig. 11.1 a),

and having an odd number of electrons per lattice period, are

guaranteed to be metals [9]. For an even number of electrons,

we find distinct phases of matter that exhibit either metal-

lic or insulating behavior; a transition between an insulator

and a metal is accompanied by a change in the symmetry

properties. Such changes are discrete, in the sense of chang-

ing from one integer to another. In analogy to how there is

no continuous way to change from integer into another, the

metallic states of matter are profoundly robust and cannot

easily be transformed into a different state of matter. Prac-

tically, these crystals are not as susceptible to impurities and

defects as regular crystals, making them attractive candidates

for electronic devices.

Using the language of topology, this new state is differ-

ent from other electronic states that can exist in a non-

symmorphic crystal. In the present case it is the topology

of the quantum-mechanical wavefunctions that distinguishes

the electronic states. Electrons having the nonsymmorphic

symmetry of Fig. 11.1 a) behave as if they had an additional

degree of freedom that can only take two discrete values,

analogous to the half-integer-spin degree of freedom in elec-

trons. A unique property of spin, which has an analogy in

the nonsymmorphic case, is that it does not return back to

itself after a rotation of 360 degrees but only after a rotation

of 720 degrees. This resembles walking around a Moebius

strip, where one only returns to the starting point after going

around the strip twice.

The theory was applied to the material WTe2 which has

garnered attention for its highly unusual resistivity under the

effect of a magnetic field. Recent photoemission experiments

have also shown that the electrons in WTe2 absorb right-

handed photons differently than they would left-handed pho-

tons. The theory that was formulated showed that these ex-

periments on WTe2 can be understood based on the topolog-

ical properties of this new class of metals. The topologically

protected band crossing in these nonsymmorphic semimet-

als is of the form of a Dirac cone, i.e., resembling that of

massless relativistic electrons. Such an electronic structure

is already known from atomically thin carbon layers, i.e.,

graphene. However, our study uncovered that the monolayer

of WTe2 realizes an interesting twist to this electronic struc-

ture, in that the velocity of the Dirac electrons becomes very

anisotropic. This anisotropy is so strong that the velocities of

the two branches of the Dirac cone have the same sign in one

direction of space, while they have opposite signs in another

as seen in Fig. 11.1 b). This forces the Dirac cone to ‘tilt

over’ and can be seen as a strong breaking of Lorentz sym-

metry [10] – a situation distinct from the Lorentz symmetric

Dirac cones in graphene, for example.

[7] A. N. Mazhar et al., Large, non-saturating magnetore-

sistance in WTe2, Nature 514 205 (2014).

[8] L. Muechler, A. Alexandradinata, T. Neupert, R. Car,

Topological Nonsymmorphic Metals from Band Inver-

sion, Phys. Rev. X 6, 041069 (2016).

[9] H. Watanabe et al., Filling-Enforced Gaplessness in

Band Structures of the 230 Space Groups,

Phys. Rev. Lett. 117, 096404.

[10] H. Watanabe et al., Type-II Weyl semimetals,

Nature 527 495 (2015).

48

Physik-Institut der Universität Zürich | Annual Report 2016/17



11.2 No go theorem for Bose-Einstein condensation of

anyons

Topologically ordered states of matter are realized in quasi

two-dimensional systems, such as the fractional quantum Hall

effect. The zero-temperature ground state of such a system

is a gapped quantum liquid, i.e., it is a completely featureless

state. What is most interesting are the elementary excita-

tions above this liquid ground state. One can construct local-

ized excitations that have particle-like character and striking

universal properties and can move freely in the liquid (one

says they are deconfined). The excitations have fractionalized

quantum numbers with respect to those of the constituent

particles out of which the quantum liquid is made (elec-

trons), for example by carrying a sharply defined fraction of

the elementary charge. More important, however, are the frac-

tionalized quantum-statistical properties of these excitations.

Free particles in nature come only in two species, fermions

and bosons, depending on whether the quantum mechanical

wave function acquires a minus sign when two of these parti-

cles are interchanged. The fractionalized particles in topolog-

ically ordered systems can change the phase of the quantum

mechanical wave function by any (rational) amount when

transported around one another (Fig. 11.2 a). They are thus

called anyons. Even more strikingly, such anyons can entirely

change the quantum mechanical state of the system when

transported around one another. If this is the case, they are

called non-Abelian anyons. Physicists have envisioned build-

ing a particularly robust quantum computer based on these

exotic properties of non-Abelian anyons [11].

Of all these quantum mechanical particles, bosons stand

out by their ability to undergo a Bose-Einstein condensation:

They can coherently appear in large numbers in a quantum

system, driving it into a new phase [12, 13]. This effect has

been shown in cold atomic gases, for example, and is closely

related to the phenomenon of superconductivity.

Our study shows that not all bosons can undergo a

Bose-Einstein condensation transition [14]. We proved a no-

go theorem by which the condensation of classes of non-

Abelian bosons, which appear as excitations in topologically

ordered quantum liquids, is forbidden. This is relevant be-

cause Bose condensation is a common mechanism by which

phase transitions between topologically ordered phases are

driven (Fig. 11.2 b). Roughly speaking, the theorem states

that if the amount of quantum information carried by the

non-Abelian boson is smaller than the quantum information

carried by the particles it can branch into after the conden-

sation transition, there is an obstruction against its conden-

sation.

An interesting application of our theorem applies to

bosons that appear in so-called Fibonacci topological order,

which is of particular interest to the aim of building a topolog-

ical quantum computer. We show that Fibonacci topological

order cannot undergo any type of condensation transition.

Fig. 11.2 – Two-dimensional topologically ordered states are
characterized by several types of anyon quasiparticle excita-
tions (colored dots). a) A key property of topologically or-
dered phases is that when anyons are adiabatically braided
around one another, the quantum state of the entire sys-
tem can change. b) A class of transitions between anyon
theories can be described by the condensation of a bosonic
anyon (here in yellow). The condensation changes the type
of topological order, for instance by confining part of the
anyons that are then not part of the low-energy excitations
anymore, as depicted for the green anyon here.

This may point to a certain robustness of this topological

order. More broadly, our results shed light on the rich math-

ematical structure behind topologically ordered states with

anyons.
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11.3 Spin-polarized step-edge states on the surface of

topological crystalline insulators

Of the various collaborations that we have entertained with

experimental groups, we want to highlight one that dis-

covered a new type of one-dimensional conducting states on

the surface of a very special crystal, as so-called topological

crystalline insulator [15].
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A topological crystalline insulator is an insulating three-

dimensional crystal with gapless, i.e., conducting, electronic

states on its surface. These surface states behave like rela-

tivistic Dirac electrons, just as in graphene, with the differ-

ence that they have a well-defined spin direction that is tied

to their propagation direction (Fig. 11.3 b). The surface can-

not be made insulating unless one breaks symmetries of the

crystal such as certain mirror symmetries. In practice, these

surface Dirac electrons are found to be a robust property of

topological crystalline insulators, that is largely insensitive to

imperfections of the surface [16].

Our experimental collaborators from the University of

Wuerzburg, Germany, carefully examined the surface of the

topological crystalline insulator (Pb,Sn)Se with a scanning-

tunneling microscope and spectroscope. This device can re-

solve the topography and electronic structure of surfaces with

atomic scale resolution and precision. Besides the expected

surface states, they found one-dimensional conducting chan-

nels exactly at places of the surface where a step-edge is

located. A step edge is the termination of extra layer(s)

of atoms on the surface. Even more strikingly, these one-

dimensional channels were only present if the step edge was

an odd number of atomic layers thick (like one and three lay-

ers), while no extra states where found if the step was a even

number of atomic layers high.

This systematic observation can be explained by the topo-

logical electronic structure of the surface, which can be seen

as an exotic form of a Dirac semimetal [17]. In the rock salt

lattice structure of (Pb,Sn)Se (the same structure as regular

salt, NaCl, see Fig. 11.3 a), even and odd step edges can,

when viewed from above, be distinguished as follows (see

Fig. 11.3 c): For even steps, the lattice structure on either

side looks exactly the same. For odd steps, the lattice struc-

ture on one side is translated by a fractional (half) lattice vec-

tor with respect to the other side. This fractional translation

has nontrivial implications for the surface electronic states:

The quantum mechanical wave functions acquire a nontrivial

phase, so-called Berry phase, under such a translation. As a

result the surface state Dirac electron wave functions cannot

be phase-matched between both sides of the step edge ev-

erywhere. This interference or phase frustration results in the

presence of extra electronic states which are bound to the

step edge as observed in the experiment (Fig. 11.3 e).

The one dimensional channels bound to the odd step

edges have remarkable properties. First, they seem to travel

along the step edge almost unperturbed, i.e., with very lit-

tle back scattering from impurities. Second, they are nearly

dispersionless, meaning that they are found at the same en-

ergy independent of the momentum along the edge. Third,

they were still observed at temperatures as high as 80 K and

in magnetic fields of up to 11 T (the highest field accessi-

ble by the apparatus). Fourth, they are confined to a very

narrow region of only about 10 nm. Together, these charac-

teristics make them a promising platform to build electronics

and quantum devices on the smallest scales.

Fig. 11.3 – One-dimensional step-edge states on the sur-
face of three-dimensional topological crystalline insulators.
a) Rocksalt lattice structure of (Pb,Sn)Se. b) Four topo-
logically protected non-spin-degenerate Dirac cones in the
surface Brillouin zone of (Pb,Sn)Se. c) Difference between
odd and even step edge when viewed from above. The lat-
tice structure on the left and right of the odd step edge
is related by a fractional lattice translation. d) Numerical
simulation of the electronic structure of a three atoms high
step edge (energy vs. momentum along the edge). High-
lighted in red are the states localized along the step edge.
e) Scanning tunneling microscope image of an even step
edge (above) and an odd step edge (below). Left is the to-
pography and right is the spectroscopy image, which clearly
shows the one-dimensional channel bound to the odd step
edge.
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