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Abstract

In this thesis we have examined the edges of hydrogen-terminated
single-sheet graphene ribbons by means of ab initio density functional
theory calculations. Edges in different crystal symmetry directions,
with different planar reconstructions and different edge-hydrogen den-
sities were considered. The studies concentrated on the analysis of the
formation energy, the bandstructure and the magnetism of the ribbons.
Following our primary goal, the identification of the energetically most
favorable edge configuration under different chemical conditions, the
formation energy was translated to a broad sector in thermodynamical
phase space via the chemical potential of molecular hydrogen.

These considerations reveal that at room temperature and under
ambient hydrogen pressure the monohydrogenated armchair ribbon
represents the most stable configuration. In the area of negative for-
mation energy where spontaneous breaking is possible, the dihydro-
genated armchair ribbon becomes most favorable. None of the arm-
chair ribbons analyzed in this study showed magnetism whereas zigzag
ribbons can be magnetic or not depending on the edge configuration.
The region where magnetism occurs, however could be reduced to low
pressure, high temperature conditions.

The zero-point formation energies calculated here confirm our ex-
pectations based on the analysis of the Clar structures of the ribbons.
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1 Preface

This thesis is the result of the studies I have performed in the last six
months at the Institut de Minéralogie et de Physique des Milieux Condensés
(IMPMC), Paris, in the group of Prof. Francesco Mauri and under the su-
pervision of Dr. Ari Seitsonen. The formal aspect of the work is perhaps a
little unusual for a Master-thesis and therefore deserves explanation.

At some point during the project, we realized that the accumulated
results are worth a publication. Since the field is very competitive we
decided—in agreement with all involved persons—to concentrate on the
composition of a tentative draft of the planned article. The resulting manu-
script consequentially represents the main part of the thesis and it is included
in a separate document. Preliminary to that, I give a general introduction to
the field on the next pages and include a chapter on the calculation methods.

In addition, a series of commented sketches, graphs and figures along
the main lines of my work is presented in the appendix. This material can
be seen as supporting and explanatory information for the paper. Unfor-
tunately the time was too short to include a rigorous discussion of these
things but I still wanted to include them and hope the reader can follow the
outlined path.

I would like to thank Ari Seitsonen for the good cooperation, the support
he gave me in all kinds of subjects and the time he took for this project in
addition to his already tight schedule. It was a pleasure to work with you
and you deserve much credit for the outcome of this work. I thank Prof.
Francesco Mauri for giving me the chance to come to Paris and work under
his excellent guidance. All group members, especially Michele Lazzeri and
Marco Saitta deserve a big thank-you for the fruitful discussions and the
engagement they brought to this project. I thank also Prof. Thomas Greber
for the effort he made in organizing this thesis and his mentorship from
which I benefited in the last two years. Not least, I would like to thank
Prof. Thomas Gehrmann for the responsibility he took in representing this
thesis in the faculty.



2 Introduction

Missing dimension in the carbon world. Carbon represents without
any doubt one of the most intriguing elements, forming a vast amount of
different allotropes with a wide range of physical properties. Besides the
long known diamond and graphite structure, in the last 20 years mesoscopic
carbon molecules like fullerenes [1] and nanotubes [2] attracted a lot of
scientific and public interest. Due to their interesting dimensions, form
factors, physical properties and sheer beauty, they constituted a whole new
research area, that of mesoscopic carbon compounds, and raised a lot of
hope for future applications.

At that point, however, the picture of carbon forms was incomplete from
point of view of dimensionality [3,4]. While diamond and graphite represent
3D crystals, carbon nanotubes can be understood as 1D objects and the
spherical fullerens as 0D. A two-dimensional form was missing.

Discovery of graphene. In 2004 a group around Novoselov and Geim
from Manchester reported the production of atomically thin, isolated sheets
of graphite [5]. This two-dimensional crystal, formed by carbon atoms ar-
ranged in a hexagonal honeycomb lattice, completed the picture and was
given the name graphene.!

The early production techniques were astonishingly low-tech. By rub-
bing or repeated peeling with adhesive tape single sheets can be exfoliated
from bulk graphite and then identified in optical microscopes. Despite its
simplicity, this approach allows the production of large (up to 100 um) high-
quality samples [4] ready for experiments of various kinds.

Since then, graphene research formally took off. There are hundreds
of scientific papers published every year on the subject, a peak is still out
of sight, and one breathtaking result is hunting the other. Let us try to
summarize some of the most remarkable ones.

Fundamental physics. Due to its unique electronic structure, graphene
represents a perfect model system for quantum electrodynamics in con-
densed matter.? Its bandstructure exhibits two conical points in the re-
ciprocal unit cell where the conduction band and the valence band meet, see
Fig. 3 in the appendix. The electron energy in the neighborhood of these
points depends linearly on the k-vector and leads to a light-like dispersion
relation. Carrier transport is not described by the Schrodinger equation as

!The material, however, is not strictly two-dimensional. Either it is supported by a
substrate and therefore part of a three-dimensional structure or, in its suspended form,
shows surface roughening with out-of-plane deformations up to 1 nm [6].

2 Actually this was recognized long before the discovery of graphene [7,8]. The material
then was thought to be only an academic toy model though. But these studies certainly
have been an inspiration for experiments, once the material was at hand.



in most condensed matter situations, but rather by a formal equivalent to
the relativistic Dirac equation for massless particles [9]. Consequentially,
charge carriers in graphene have an effective zero rest mass and travel at an
effective ‘speed of light” of vp = 10°m/s [9].

Also following from the Dirac-like dynamics, graphene was theoretically
predicted [10] and experimentally confirmed [11,12] to show a distinctive
half-integer form of the quantum Hall effect even at room temperature.

Another example of the insights graphene offers to fundamental physics
will be given in one of the next issues of Science. It was demonstrated
that the fine structure constant can not only be measured in sophisticated
facilities and under special conditions but also in a table-top experiment by
analyzing the light absorption of graphene [13].

Electronics. The importance of the material not only as playground for
fundamental physics but also for technical applications was pointed out al-
ready when it was discovered [5]. Electrons and holes in graphene travel
over long distances without scattering, resulting in ballistic transport on
submicron distance under ambient conditions [14,15]. Also spin transport
over micrometer distances at room temperature was observed [16].

The conductivity in the material never falls below a minimum value,
even in the limit of vanishing charge carrier concentrations [9]. And not at
least, graphene’s high electronic quality is expressed by a room temperature
carrier mobility of ~ 200000 cm?/V s what is by far higher than that of any
other semiconductor [17].

All these properties make graphene a very promising material for future
electronic devices.

Drawbacks. There are, however, some obstacles to overcome on the way
to graphene based electronics. First of all, graphene represents a zero-gap
semiconductor, making the material unsuitable for direct application in field
effect transistors (FET) or other semiconductor devices [5].3

Carbon nanotubes (CNTs) on the other hand, have excellent properties
for FET applications [18,19]. The periodic boundary conditions imposed by
rolling a piece of graphene to the cylindrical form open up a band-gap in 2/3
of the cases (depending on the chirality of the tubes) [20-22]. Hence, a part
of CNTs exhibit true semiconductor properties in addition to the electronic
characteristics of graphene [23].

The problem with CNTs is that their chirality cannot be controlled dur-
ing growth, making laborious separation procedures necessary. And the
integration of CNTs in large scale electronic circuits represents another se-
rious hurdle [24].

3Some prove-of-principle FET based on graphene have been studied. They exhibit only
modest on/off resistance ratios [5].



Graphene Ribbons. In this context, graphene nanoribbons (GNRs)
[25,26] appear as valuable alternative. The boundary conditions imposed on
the material through confinement in one dimension can open up a bandgap
as in the case of CNTs. GNRs therefore represent a perfect combination of
graphene’s advantageous electronic properties and the semiconductor char-
acteristics of CNT [27,28], but offering in addition the possibility of litho-
graphic patterning [29, 30].

The vast amount of scientific interest paid to GNRs in the last few years,
however, is not only owed to their formidable applicability in semiconductor
devices, but also to the fact that they represent models to study the edges
of graphene and how they influence the properties of the material.

Edges. GNRs appear in two fundamental edge topologies, armchair (AG-
NRs) and zigzag (ZGNRs), see Fig. 4 in the appendix. Mixtures are also
possible. Based on theoretical considerations, it was found that ZGNRs fea-
ture a spin-polarizied state localized at the edges [31]. In the ground-state,
the net-polarization at the two edges is of opposite sign. The energies of
these spin-polarized states can be shifted by applying external fields, re-
sulting in metallic conduction for one spin orientation and isolation for the
other (so-called half-metalicity) [32]. Such properties are very rare and make
ZGNRs a sought-after candidate for spintronic devices.

The width of the GNRs [30], their edge topology [25] and decoration [33],
however, have a big influence on the electronic properties. In particular,
an inverse power law was found to describe the decrease of the bandgap
as a function of increasing ribbon widths [34]. Thus, for semiconductor
applications, very narrow ribbons are necessary.

Using lithographic techniques, the production of GNRs as narrow as
20 nm has been reported [29,30]. Further minimization seems difficult at
the moment and the edges produced in this way show high disorder. In a
recently published chemical derivation, GNRs with very smooth and well
defined edges and widths down to sub 10 nm could be realized [35].

The exact geometry and edge decoration of the GNRs produced in this
attempt, however, are not known.

Goal of this thesis. Using density functional theory (DFT) calculations
we want to find the most stable configuration of hydrogen-terminated GNRs.
To this end we perform a systematic study of different edge geometries,
reconstructions and edge-hydrogen densities.

We are aware of the fact, that under different chemical conditions the
most stable structure will vary and that DFT calculations are only valid at
the absolute zero point. By expressing the formation energy of the GNRs
as a function of the hydrogen chemical potential we expand the analysis of
their relative stability to the whole thermodynamic phase space.



This analysis gives a prediction of the edge configuration and electronic
properties of GNRs chemically produced in a hydrogen dominated environ-
ment. If one day cutting of graphene into ribbons with atomically defined
edges will be possible, we can predict what hydrogen-decoration is most
probable. The corresponding studies for other elements than hydrogen will
follow.

Part of the motivation was also to investigate under what conditions the
much discussed magnetic, monoydrogenated ZGNR is favorable. Based on
calculations at the absolute zero point and the observation that the giant
benzenoid hydrocarbons described lately [36] have mainly armchair edges,
we have some doubts concerning the stability of this structrue.

Armchair edges are more stable because they interfere less with the in-
trinsic aromaticity of graphene sheets. Usual zigzag edges suppress the aro-
maticity as an analysis of their Clar structures shows, see Fig. 6. However,
we found a zigzag edge with a particular edge-hydrogen termination that
does not destroy the aromaticity. The analysis showed that this structure
indeed represents the most favorable configuration in a small region of phase
space, but exhibits no magnetization.



3 Density functional theory

All calculations in this thesis were performed within density functional the-
ory (DFT). The DFT framework has been established in physics and chem-
istry to calculate properties of large quantum mechanical systems and I have
already given a short overview of its fundamental aspects in my Bachelor
thesis [37] (based on [38]). After a short summary of these concepts, here I
also go into some more advanced subjects.

Outline. A quantum mechanical system and all its properties are de-
scribed by the corresponding wave function (7, 7s,...,7x). Solving the
many particle Schrodinger equation for a big system directly in order to
obtain the required information is an attempt with less prospect to success.
Most problems are not solvable analytically and the Schrodinger equation
is too expensive to solve numerically in terms of calculation time and data
storage. DFT represents a way to obtain all the required information (at
least about the ground state) much more elegantly.

First Hohenberg-Kohn theorem. First of all, in DFT, normally only
the electrons are treated quantum mechanically, the atomic nuclei are only
represented by the potential v(7) that they impose on the electrons. Then
the focus is shifted from the many particle wave function to the electron
density

n(f):N/d3r2 By (T T, TN (T Ty TN (1)

In fact, for the ground state, the electron density no(7) is equivalent to the
many body wave function ¢y (71,...,7n). The first Hohenberg-Kohn theo-
rem namely states, that the ground state electron density no(7) of a many
electron system in the presence of an external potential v(#) uniquely de-
termines this external potential (up to an additive constant) [39]. Through
the Schrodinger equation

N

2
( i ZVE+v;xt+U)¢=Ew. (2)
=1

- 2m ¢

then the wave function can be obtained in principle.

Energy functional. Put in other words, the wave function corresponding
to a given ground state density is that one which reproduces the density via
(1) and minimizes the energy

Elp] = (|T + Vext + Ul9h) - 3)



In egs. (2) and (3), Vext denotes the external potential imposed by the

atomic nuclei
N

N 7>
Vo =D () == 7

and U the Coulomb interaction between the electrons
2
e
U == I —————
Z |7 — 7]

Second Hohenberg-Kohn theorem. The second Hohenberg-Kohn the-
orem states, that for a given external potential v(7), also an energy func-
tional of the density, E,[n], exists that assumes its minimum for the correct
ground state density no(7). For instance, the energy in the external potential
can easily be written as

Eext[n] :/dgrn(F)v(F)

but also the kinetic energy 1" and the electron-electron interaction energy
Eint in

E, [n] = T[n] + Eint [n] 4+ Foxt [n] (4)
can be thought of as functionals of the density. The way DFT works, is
clear. An initial external potential is set up based on the coordinates of
the atomic nuclei and their atomic number. Then by minimizing the total
energy functional (4), the corresponding ground state density is found. This
density gives rise for a new external potential via the first Hohenberg-Kohn
theorem and so on. The process is iterated until self-consistency is achieved.

Kohn-Sham approach. In the Kohn-Sham approach [40], minimization
of the total energy functional (4) is done by introducing a set of N non-
interacting single particle wave functions ¢;(7) with the same density

no(7) = 3164 (5)

as the original interactive system. The kinetic energy of the auxiliary system
expressed in terms of the single-particle orbitals reads

2
L=y / Br 61(7) V2u(7) (6)

Remark that this is an implicit functional of the density n because the Kohn-
Sham orbitals ¢;(7) are functionals of the density as the first Hohenberg-
Kohn theorem shows.



Hartree energy. The Coulomb part of the electron-electron interaction
can be taken into account by introducing the Hartree potential

() =< [ o 2L 7)

-

and the corresponding Hartree energy

1 e? n(r)n(r)
Euln) == | &rn(@ ou(@) = — 43 a3 M)
i =5 [ @ra@n =5 [ T
The difference between the kinetic energy of the interacting system and
the auxiliary system as well as all contributions to the electron-electron
interaction other than the Hartree energy are summarized in the exchange
correlation energy

Exc — (T - Ts) + (Eint - EH) .

This quantity consists of the exchange energy due to the Pauli exclusion
principle and the fermionic correlation contributions. With that, we can
rewrite the total energy functional as

Eyln] = Ti[n] + Enuln] + Exc[n] + Eext[n] . (8)

This equation is exact, there is no term left out and no approximation has
been made. However, no exact form of Ey.[n] is known, so for this term an
approximation has to be introduced.

Kohn-Sham equations. Minimization of the total energy functional (8)
is performed via the variation principle. Since the kinetic energy Tj is given
as a functional of the Kohn-Sham orbitals, variation is taken not with re-
spect to the density n but to ¢f (7). The constraints that the orbitals are

orthonormal, (¢;|¢;) = 0;;, and that the number of electrons is conserved,
N = [n( 7)d3r, are implemented by introducing a Lagrange multiplier term:
0 0 [E / & (r B/ _ ¢ )}
= g Elk — Ok
667 (7) l
d Ey[n]
= — — €P; with ¢; = ¢;;
CHGEG

5T, n} [5EH[ n] 5Exc[”] 5Eext[”]] Onr) ()

on(r) on(r) on(r) ] 0¢;(7)
= —6i(7) + [on(7) + ve(7) + 0(7)] $(7) — €si(7)

This leads to the famous Kohn-Sham equations

ﬂ@wzqu, (©)

8



with the effective potential

Vs = U + Vg + Ve - (10)

The potential vy () = 5 (%] for the exchange correlation energy can only
be calculated if an approximation for Fy. has been chosen.

To sum things up, in this approach we have substituted the task of
solving the many-body Schrodinger equation by minimizing E,[n], and the
minimization of E,[n] by solving the Schrédinger-like equations of a non-
interacting system.

The exchange correlation energy. In the construction of the total en-
ergy functional (8), we have separated the known and easy to compute
contributions from the complicated many-body effects in Fy.. For this term
then an approximation has to be choosen, what of course is only justified if
its contribution is small compared to the others.

Our ignorance of the exact form of Fy., however, is not the only reason
for the approximative approach to this quantity. In fact, some contributions
to Ey., are known exactly. For instance the exchange energy can be written
in terms of the Kohn-Sham orbitals as

:_Z/d?)/dg,wwz’(mi( gy

7 — 7|

So, the part which has to be approximated could be further reduced. This,
however, is usually not done in DFT calculations. The evaluation of (11)
is an extremely expensive computational tasks and in addition, the all in
all accuracy is higher if an approximation for the whole E,. is taken due to
error cancelation.

For the precise form of Fy., different approaches are in use. In the
localized density approximation (LDA), Ex. is given in a form that depends
only on the local density:

ELDAR] — / B exe(n (7))

In the generalized-gradient approximation (GGA) also a dependence on the
variation of the density is allowed, leading to an expression of the form

ES(':GA[n] = / d3r f(n,Vn). (12)

For the function f(n,Vn), very different choices exist, constructed for ex-
ample by fitting a parametrized expression to some test sets.



Spin-polarization. The formulation of DFT presented up to this point
concentrates on the particle or charge density n(7) and can be considered
as charge-only theory. Often an extension called spin-DFT (SDFT) is used
that employs one density for each spin, ny(7) and n| (7). This modification
of the theory allows the study of states with internal magnetization and
properties in the presence of an external magnetic field.

The formulation of SDFT is essentially the same as presented above with
an additional index for the spin. The total particle density is

n(r) = nq(F) + n (7)
and the spin-magnetization density reads
m(r) = po (n4(7) = n (7))

with the Bohr magneton pg. In the Kohn-Sham equations,

h2v2
|:_ om + Us,o’(f‘):| ¢i,o(7z‘) = 6i,0¢i70'(7?)7
two different effective potentials, vs o () = Vo (7) +VH () +Vxc,0 (), have to be
applied. The potential in the presence of an external magnetic field depends
on the spin and changes to v, (7) = v(F) — oppB (with ¢ = +1). In any
case, the exchange correlation energy will depend on both spin-densities, so
for the corresponding potential holds

SESPT T [ny, n]
UxC,O'(’F) - T('F)

The internal magnetic field By, in spin-polarized systems is then given by
Uxc,| — Uxc,1 = /-’LOBXC'

Plane waves. Besides the approximative treatment of Fy. discussed above,
there is another approximation in the way, the Kohn-Sham equations (9) are
numerically solved. This is done by expanding the Kohn-Sham orbitals ¢;
in an appropriate set of basis functions and solve for the corresponding co-
efficients in the expansion.

A priori, these equations have to be solved for all electrons in the config-
uration, what can be infinitely many in cases like our infinite ribbons. If the
system is periodic, however, according to the Bloch theorem, it is sufficient
to consider the electrons in a periodic cell. Each wave vector component of
these finitely many wave functions can then be written as a product of a
cell-periodic part and a plain wave part [41,42],

&, ¢ (7) = u, ¢ (7) exp(ik - 7),

10



where the wave vector k can be assumed to lie in the first Brillouin zone.
The cell periodic part u; E(F) has the same periodicity as the lattice. It can

therefore be expanded in plane waves whose wave vectors G are reciprocal
lattice vectors
i) = 2: ¢ fra exp(iG 7).

So, in the end each wave function can be written as sum of plane waves?

}:}: (i(G+Fk)-7) . (13)

This a double infinite sum over all the discrete reciprocal lattice vectors,
(_j, and the continuous vectors in the first Brillouin zone, k. In practical
calculations only plane waves whose kinetic energy is smaller than some
particular cutoff energy, Ecutoft, are used [41]:

R2 |k + G|?

om < Ecutoff . (14)

The coefficients for the plane waves with higher kinetic energy are typically
less important. Furthermore, experience shows that the sum (or better the
integral) over k can be approximated very accurately by a sum over an
affordable number of k-points [41,43]. This restriction together with the
condition (14) makes the summation in (13) finite and numerically accessi-
ble.

The accuracy of the calculation can always be improved by using more
k-points and a higher cutoff energy. These two are the most important
convergence parameters in DFT calculations. See our convergence tests in
Figs. 7-11.

Pseudopotentials. The chemical bonding and solid-state properties of
any system are mainly determined by the valence electrons. The core elec-
trons of an atom, on the other hand, remain nearly unchanged, no matter in
what environment the atom is put. Based on this fact, it is the goal of the
pseudopotential approach in DFT to reduce the numeric effort by excluding
the core electrons from the self-consistent calculation.

This not only cuts the number of electrons considered, but also makes the
calculation of the remaining valence electrons less extensive. The valence
orbitals namely oscillate rapidly in the region of the atom core to assure
orthogonality to the orbitals of the core electrons. It requires a huge number
of plane waves in the basis set to account for these oscillations [38].

The idea behind the approach is to replace the ionic potential v and
the core electrons by a pseudopotential vPP, such that outside a radius 7.

4There exist also other suitable basis sets [38].

11



separating the core form the valence region, the valence orbitals calculated
in vPP are identical to the ones calculated in v [41]. Ideally, the valence
orbitals in the pseudopotential have no root in in the core region, making
it possible to expand them in a much smaller plane wave basis set than the
original valence orbitals.

The density of the core electrons and the pseudopotential v*'* are de-
termined in preliminary Kohn-Sham calculations on reference systems. The
way vPP is constructed, however, is not unique and various conceptions are

in use [44].

DFT and thermodynamics. The relative stability of GNR with differ-
ent edges is analyzed by adopting methods used in surface science [45,46].
The quantity that is compared is called edge energy or edge free energy.’
We define it in analogy to the surface free energy as

1
2 lcell

Here I.. denotes the edge length of the unit cell. The factor 2 accounts for
the two edges on both sides of the ribbon. Giipbon is the Gibbs free energy
per unit cell of the ribbon and nc and ny are respectively the number of
carbon and hydrogen atoms in the ribbon. py, is the partial pressure of Hy
and prot the total pressure of the system. pc and pp, represent the chemical
potentials for hydrogen and carbon.

We assumed that bulk graphene is in equilibrium with carbon in its
natural state,

p, (T, pu, ) ) '

<Gribbon(Ta ptot)_nC HC (Tv ptot)_nH B

Eedge (Tv PH,, Ptot ) =

Gouk (T, prot) = n pc (T, peot)

where Gpyik is the Gibbs free energy per unit cell of a graphene sheet and n
the number of carbon atoms per unit cell. In the primitive hexagonal unit
cell, n = 2 holds. Thus, we can rewrite the edge energy as

1
2 lcell

This formula gives Egqge in the energy gauge of classical thermodynamics
where the formation energy of an element at standard conditions is zero.
We want to convert it to the DFT gauge, such that Giippon and Gpuk just
represent the DFT total energies. In the DFT gauge, we then have

1

Eedge (T7 pHg) = Tll (Eribbon —nc
ce

which is already enough to compare relative stabilities by plotting Eeqge
versus pp,. However, if we want to assign temperature and pressure values
to Eeqge We have to transpose also py, to the DFT energy scale.

G T T
(Gribbon(T,ptot)—nc bulk ( aptot)_nH fo, 7pH2))‘

Eedge(Ta PHsy ptot) = B 5

Boa - pa (T sz))
2 T ’

5In our discussions we used the terms ‘edge free energy’, ‘edge energy’ and ‘(edge)
formation energy’ as synonyms.

12



In the ideal gas approximation, the hydrogen chemical potential can be
written as

1
piey (T pry) = pmy (T, pY,) + 3 KT In (i?) . (15)
Ha

For a better understanding of the path in the phase space, we want to refor-
mulate this by introducing a term for the change in the chemical potential
when moving from T'= 0 to T =T at constant pressure p%Q:

Apirty () 725 = 1o, (T Pit,) — o, (0, P, ) (16)
Combining eq. (15) and (16), we obtain
0 0 \T=T , 1 PH,
it (7, 1t) = o, 0.38,) + Aoy G, JIFS + 5k (B ). )
Ho

The value for Apm,(pu,)|7=L can be deduced from thermodynamic ta-
bles [47].

Now we can define the chemical potential on the DFT energy scale in
analogy to eq. (17) as

—r 1 PH
MﬁQ(Tasz) = E&FT + Apm, (p%z)ﬁ:o + B kT In <p02> )
Ho

This expression allows us to translate the chemical potential to tempera-
ture and pressure conditions and vice versa. Note that at absolute zero
temperature py, = EI%FT.

13
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A Appendix

Figure 1: Two unit cells for graphene. On the left side the hexagonal unit
cell with two atoms in its basis is shown (dark gray). This is the primitive
unit cell. On the right side an orthorhombic cell with four atoms in its basis
is presented (dark gray). This cell is more convenient as a starting point for
supercell constructions in DFT calculations on GNRs.

Figure 2: Reciprocal lattice of graphene. If one starts with the hexagonal
lattice in real space, also the reciprocal space forms a hexagonal lattice (First
Brillouin zone in light gray). In case of the orthorhombic real-space unit cell,
the reciprocal space forms an orthorhombic lattice (Because of symmetry,
only the area in dark gray has to be studied.). The points where valence and
conduction bands meet are situated at the points K and K’. By back-folding
this point comes to lie at 1/3 on the ky axis in the orthorhombic cell (K”).
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Figure 3: Band structure of graphene calculated in a tight-binding approx-
imation [48]. Notice the conical points where the energy depends linearly
on the k-vector. Electrons in this region obey the Dirac equation with the
Fermi velocity playing the role of the speed of light [9]. By projecting the
bandsurfaces to the ky and ky axes and back-folding to the first Brillouin
zone of the orthorhombic lattice, the point K comes to lie at £, = 0 in
Fig. 15 and kyx = 1/3 in Fig. 16.

(a) -2

(b) -1

Figure 4: Ribbons with the two fundamental edge geometries and the count-
ing that defines their width. a) Armchair ribbon with width 7 (Notation:
7-AGNR). b) Zigzag ribbon with width 4 (Notation: 4-ZGNR).
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Figure 6: Clar structure analysis. a) The superposition of the two resonant
Kekulé structures constituting the aromatic w-sextet ring of benzene is in-
dicated by a solid ring in the Clar structure diagram. Hydrocarbons formed
by fusion of benzene hexagons are called polycyclic aromatic hydrocarbon
(PAH). These may have aromatic rings and double bonds in their Clar struc-
ture diagrams. The stability of a PAH isomer, however, increases with the
number of 7-sextet rings [49,50]. If all m-electrons of a PAH are part of an
aromatic 7-sextet ring, the structure is called all-benzenoid polycyclic aro-
matic hydrocarbon (PBAH). Graphene is a PBAH. b) The smallest possible
PBAH is the tetracyclic triphenylene 1. Compared with its isomers [4]he-
licene 2, chrysene 3, benz[alanthracene 4, and naphthacene 5, tetracyclic
triphenylene is less reactive, more stable and has the largest bandgap [36]. ¢)
The formation of 7w-sextet rings in monohydrogenated ZGNRs is suppressed.
The net structure is quinoidal (two double bonds per hexagon) [36]. Only
in the limit of infinite ribbon width the all-benzenoid structure of graphene
is restored. ZGNR with different edge-hydrogen decorations may have aro-
matically more favorable Clar structures, see the manuscript. d) The mono-
hydrogenated 9-AGNR is a perfect PBAH.
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Figure 7: DFT convergence test. Total energy FEipbon Versus in-plane vac-
uum between the ribbons. As reference, the total energy for an in-plane
vacuum of 60 Bohr was set to zero.
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Figure 8: DFT convergence test. Total energy Eyipbon versus vacuum di-

mension between the planes. As reference, the total energy for a vacuum of
25 Bohr was set to zero.
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Figure 9: DFT convergence test. Total energy Fiipbon versus wave function
cutoff energy. As reference, the total energy for E o = 80 Ry was set to
ZEro.
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Figure 10: DFT convergence test. Edge energy (at 7' = 0) versus cutoff
energy. For the calculation of Fyyui and Eiipbon the same cutoff energy was
used. Note that the edge energy converges earlier than the total energy, Fig.
9.
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Figure 11: DFT convergence test. Total energy FEiibbon versus number of
k-points.
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Figure 12: Edge energies (at T'= 0) of pure carbon GNRs as a function of
ribbon width. The numbers besides the data points indicate the width of
the ribbons in the notation introduced in Fig. 4. In case of the AGNRs, the
edge energy shows a dependence on the ribbon width as it oscillates in a
threefold periodicity, see also Fig. 13. *The narrowest ZGNR spontaneously

breaks up into two polyyne chains.
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Figure 13: Edge energies (at T' = 0) of single-hydrogen terminated GNRs as
a function of ribbon width. The numbers besides the data points indicate
the width of the ribbon. Notice the oscillation in the edge energy of the
AGNRs with minima at widths of 3n. *The values for AGNR were taken
from [51].
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Figure 14: Clar structures of monohydrogenated AGNRs with different
widths. The ones with a width of 3n represent PBAHs and are therefore
especially stable. In this family the Clar structure is unique, in the other
cases different formulations with the same number of rings are possible.

26



E-E; (eV)
o

I I I
0.0 0.1 0.2 0.3 0.4 0.5

k, (2n/a,)

Figure 15: Bandstructure of monohydrogenated 19-AGNR (black) and bulk
graphene projected to ky (light gray). The bandgap arises due to quan-
tum confinement and edge effects (bond of outermost carbon atoms is
shorter) [52]. The size of the gap varies in a triple periodicity as a func-
tion of ribbon width [51,52].
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Figure 16: Bandstructure of monohydrogenated 14-ZGNR without spin-
polarization (black) and bulk graphene projected to ky (light gray). There
is a flat region near the Fermi energy after the K point. This flat region
leads to a peak in the density of states around the Fermi energy.
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Figure 17: Bandstructure of monohydrogenated 14-ZGNR after spin-
polarization is included. A bandgap has opened. The mechanism for the
bandgap opening differs from that in the armchair case. The high density of
states near the Fermi energy corresponding to the edge states makes sponta-
neous magnetization through electron-electron interaction possible [53]. In
the antiferromagnetic groundstate the two edges show net spin-polarization
of different signs, see Fig. 18. The edge atoms on the two sides correspond
to the two different atoms in the basis of the hexagonal unit cell, Fig. 1. The
symmetry between these sublattices is broken by the magnetization, leading
to a bandgap [7,52,54].
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Figure 18: Projected magnetization (ny — n|) versus atom position for 8-

ZGNR in the antiferromagnetic groundstate. The edge-hydrogen atoms are
not polarized. Most magnetization is found at the outermost carbon atoms.
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Stability of Hydrogen Terminated Graphene Ribbons

Tobias Wassmann, Ari P Seitsonen, Marco Saitta, Michele Lazzeri, and Francesco Mauri
IMPMC, Université Paris 6 et 7, CNRS, IPGP, 140 rue de Lourmel, 75015 Paris, France
(Dated: April 11, 2008)

Searching for the most stable configuration of hydrogen-terminated graphene ribbons,
we have studied unreconstructed zigzag and armchair strips as well as reconstructions
[P. Koskinen et. al., arXiv:0802.2623v1] at different edge-hydrogen densities. To account for re-
alistic experimental conditions, we relate the edge energies from ab initio density functional theory
calculations to the chemical potential of molecular hydrogen at finite pressure and temperature. The
results show that at room temperature and in ambient atmosphere the monohydrogenated armchair
ribbon represents the most favorable configuration. The magnetic single-hydrogen terminated zigzag
edge becomes stable only at high temperature, low pressure conditions, whereas the most favorable
systems in other regions of phase space do not acquire magnetism. In particular, we observed the
absence of magnetism in zigzag ribbons at certain edge-hydrogen densities. We discuss the stability

of the hydrogenated graphene ribbons in terms of Clar structures.

While two-dimensional graphene [1-5] exhibits fasci-
nating properties such as a light-like dispersion relation
for its charge carriers [2] and ballistic transport on large
distances [1], its gapless spectrum makes it unsuitable
for direct application as channel in field effect transis-
tors (FETSs) and other semiconductor devices. Carbon
nanotubes (CNTs), the cylindrical form of graphene, on
the other hand, have excellent properties for FET ap-
plications [6, 7] since—depending on their chirality—a
bandgap opens up [8-10] while carrier mobility still re-
mains exceedingly high [11]. Their integration in large-
scale circuits represents a serious problem though, and
their chirality cannot be controlled during growth [12].
Graphene nanoribbons (GNRs) [13-15] promise to be
a valuable alternative to CNTs in this kind of appli-
cations [16-18], combining the advantageous electronic
properties of CNTs with the possibility of lithographic
patterning [17-19].

Among the two fundamental edge geometries in which
GNRs appear, zigzag (ZGNR) and armchair (AGNR),
in particular the former has caused great resonance in
the scientific community. ZGNRs feature magnetism due
to two spin-polarized electronic states localized on the
edge sites [20] and they possibly turn to half-metal un-
der an external electric field [13, 21]. All this has fired the
hope to use ZGNR in future spintronic-devices [13, 22].
The electronic properties of the GNR, however, depend
strongly on their width [18], edge geometry [14, 23] and
decoration [24]. In particular, the bandstructure ap-
proaches the gapless limit of graphene with increasing
ribbon width [18, 25, 26]. As a consequence, for semi-
conductor applications, very narrow ribbons are neces-
sary and it is crucial to control the edge configuration.

Both requirements came a big leap closer to reality
with recently reported chemical production of sub 10 nm
ribbons with well defined edges [27]. The fast progress
made in chemical ribbon derivation motivates the ques-
tions of which edge geometry and decoration is energeti-
cally most favorable in a given chemical environment and

what electronic properties this edge configuration will im-
pose on the ribbon.

We are aware that the relative stability of single-
hydrogen terminated [25] and pure carbon [28] GNR
with different widths have already been analyzed, even
for different hydrogen saturations [26]. These analy-
ses, however, were done at only one single point in the
thermodynamical phase space, at absolute zero temper-
ature. In the present work we analyze the stability of
carbon nanoribbons at various thermodynamical condi-
tions. From our analysis we can predict which config-
uration is the most probable one for a given value of
hydrogen chemical potential.

To this end we have studied both ZGNR and AGNR
with different edge-hydrogen densities. In the case of
ZGNR we considered supercells with up to six adjacent
hexagons along the ribbon edge. Each of the edge carbon
atoms can accomodate up to two hydrogen atoms, allow-
ing to simulate a wide range of hydrogenation states. To
distinguish the different configurations we denoted them
in the form zz(n;,ng) where ny stands for the number of
consecutive monohydrogenated sites and ny the number
of double-hydrogen terminated ones. See the drawings in
Fig. 1 for some examples of the notation. The zz57(00)
system represents a pure carbon edge reconstruction pro-
posed in [29]. The widths of the ZGNR studied here vary
from 28.81 A for zz57(00) to 30.72 A for zz(1,0).

For the family of AGNRs only the primitive unit cell,
consisting of a single column of hexagons, was considered.
Again the two edge sites can be saturated with different
numbers of hydrogen atoms, referred to by m; and ms
in the form ac(mj;ms). The edge reconstruction in which
the outermost hexagon is reduced to a pentagon [29] is
denoted by ac56(m) where m indicates the number of
hydrogen atoms bond to the edge site. In this family, the
widths of the ribbons lie within 21.48 A for ac56(0) and
24.12 A for ac(11). All ribbons examined, armchair and
zigzag, have identical edge configurations on both sides.

We used the QUANTUM-ESPRESSO [30] package to



perform density functional theory (DFT) calculations of
the total energies and band structures of the presented
systems. A plane wave basis set was utilized for the ex-
pansion of the valence wave functions in the generalized
gradient approximation [31] to the exchange correlation
energy. The core-valence interactions were modeled with
Vanderbilt ultrasoft pseudopotentials [32] and a cutoff
energy of 30Ry for the wave functions and 300 Ry for
the augmented density was used. The lattice constant
was fixed to the experimental value of 2.46 A [33] but a
full relaxation of the atomic positions down to a force
threshold of 1mRy/ A was performed. For the Brillouin
zone integration, we employed a uniform k-point sam-
pling with 12 points along the periodic direction for the
armchair ribbons and 24, 12, 8, 6, 4, 4 points for the
zigzag ribbons with 1, 2, 3, 4, 5, 6 hexagons along the
edge in the supercell. In order to model isolated ribbons,
we separated them by 9.5 A vacuum in plane and 8.5 A
between the planes.

The accuracy of the calculations within the above pa-
rameters was checked by perfoming some test calcula-
tions using a much more accurate parameter set (24 k-
points for armchair, 40 for zigzag, cutoff energy 100 Ry,
larger separating vacuum). The edge energies in the two
sets vary by less than 1.5 meV/ A and we therefore expect
the error in our calculations to be at most 3meV/A.

We investigate the relative stability of the ribbons us-
ing the edge energy, i.e. the formation energy of the
edges. In this work the analysis is limited to hydrogen
atmosphere. If we denote with Eyibbon, Ebuik and Eg, the
total energies of the ribbon, bulk graphene and Hs gas
and with ng and nyg the number of carbon respectively
hydrogen atoms in the unit cell of the ribbon, the edge
energy reads

1
2

Eby i 1
Eodge = bulk MHQ)

(Eribbon —nc—, DH—

1cell

where pyy, = Em, + pm, stands for the chemical potential
of Hs on the DFT energy scale and g for the length of
the unit cell in the direction of the ribbon. Ey, has to be
divided by 2 because there are two carbon atoms in the
(hexagonal) unit cell of bulk graphene. In the ideal gas
approximation and neglecting zero point vibrations, p,
can be expressed in thermodynamical quantities as [34,
35]

pi, = HY(T)—HY(T = 0K)—TS°(T)+kT In (;;) (1)

Introducing the edge-hydrogen density (per side),
pH = s 8 we can rewrite the expression for the edge

2 lcell
energy in a form that better reflects the thermodynam-

1CS

Eedge = EO — = PH MH, - (2)

TABLE I: Edge-hydrogen density and edge energy at absolute
zero temperature of all the studied systems.

pu (A7) E° (eV/A) pu (A1) B (eV/A)

zz(0,1)  0.813  0.2224 ac(22)  0.939  -0.0710
zz(1,1)  0.610  0.0382 ac(21) 0.704  0.2390
z2(2,1) 0542 0.0119 ac(11) 0469  0.0321
zz(3,1)  0.508  0.0257 ac(10) 0.235  0.6950
7z(4,1) 0488  0.0397 ac56(1) 0.235  0.7030
zz(5,1) 0474  0.0463 ac(00) 0.000  1.0078
zz(1,0) 0407  0.0809 ac56(0) 0.000  1.4723
7z57(00)  0.000  0.9650

22(0,0)  0.000  1.1452

Here, all DFT energies are combined into

1 Ebuik En, ) 1
1

2

B) nyg B

0
E” = <Eribbon — ¢

cell
This quantity represents the edge energy at the absolute
zero point.

The values of py and E° for the studied systems are
listed in table I. They allow us to find the most stable
configuration for a given chemical potential graphically
by plotting Eeqge versus ppm, via (2). This is done in
Fig. 1, however, only the lines corresponding to the most
stable ribbons are shown for better readability.

At room temperature the partial Hy gas pressure in
air is py, = 5 x 1077 bar [35]. This gives a lower limit
to the true chemical hydrogen potential, since there are
also other hydrogen sources present like water etc. Under
these conditions the monohydrogenated AGNR, ac(11),
represents the most stable configuration. This structure
is already well understood: it is not magnetic and ex-
hibits a band gap of 0.67eV which compares well with
the literature [25].

The configuration with dihydrogenated armchair
edges, ac(22), becomes most favorable at very high hy-
drogen pressures. This ribbon does not show magnetism
either. And even though the band structure of the sys-
tem resembles that of ac(11), Fig. 2, the band gap is
significantly smaller, see table II. The important fact to
notice here is, that ac(22) represents the most favorable
structure with negative edge energy, meaning that spon-
taneous breaking of graphene into this ribbon becomes
possible if the chemical hydrogen potential is higher than
—0.133eV.

Interestingly, there is a small region between the ac(22)
and ac(11) where zz(2,1) becomes most stable. In the
band structure of this ribbon, the flat bands near the
Fermi energy that are typical for zigzag ribbons do not
appear and the system consequentially shows no mag-
netism. In fact, no magnetism was found for the zz(1,1)
and zz(3,1) ribbons either. There the band structure fea-
tures flat edge states near the fermi energy but the flat
region is not wide enough to induce a density of states



TABLE II: Bandgaps of the configurations found to be most
favorable.

2z57(00) zz(1,0) ac(11) zz(2,1) ac(22)

Bandgap (eV)  0.00 0.45 0.67 0.53 0.18

that makes spin polarization favorable. The zz(4,1) and
zz(5,1) are magnetic again with the antiferromagnetic
state being the most stable one. Later on, we will give
a qualitative explanation for the peculiar stability of the
z7(2,1) ribbon.

The area where the magnetic monohydrogenated zigz-
gar ribbon zz(1,0) becomes favorable starts at a point
that is quite challenging to reach under experimental con-
ditions. The appearance of pure carbon edges can be ex-
cluded even in ultra high vacuum. Of interest is the fact
that even though there is an edge state near the Fermi
energy appearing in the band structrue of zz57(00), the
ground state was found to be not magnetic. This means
that the bands at the Fermi energy are already too steep
to make spin polarization favorable.

Our analysis of the relative stability of GNR was based
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FIG. 1: Edge energies versus pun, for the most stable con-
figurations. Magnetism appears only in region II*. The
three alternative bottom axis relate the chemical potential
at T = 100, 300, and 600 K to the hydrogen pressure via re-
lation (1). The bracket below the schematic drawings of the
edges indicates the size of the unit cell.
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FIG. 2: Band structures of the most stable ribbons and in
light gray the one of bulk graphene. For the band struc-
ture of the monohydrogenated zigzag ribbon, zz(1,0), we refer
to [13, 36-38]. Note that for zz57(00) the bands of a broader
ribbon (width 63.40 A) is shown to see more states in the bulk
area.
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FIG. 3: Clar structures of ZGNRs with different edge-
hydrogen densities. While in single-hydrogen terminated,
zz(1,0) and double-hydrogen terminated, zz(0,1) ZGNRs aro-
maticity is suppressed, in the specific configuration of zz(2,1)
it is allowed.

on two parameters, the edge-hydrogen density pyg and the
edge energy at zero temperature, E°. While the former is
a rather obvious quantity, the latter deserves a separate
discussion.

In organic chemisty, hydrocarbons consisting of fused
benzene hexagons are called polycyclic aromatic hydro-
carbons (PAHs) and it is found, that their stability de-
pends on the topological arrangement of the 7 elec-
trons [39, 40]. Depending on the configuration they
can form benzenoid aromatic rings or localized double
bonds. For a given PAH system, according to Clar’s rule,
isomer stability increases with the number of aromatic
rings [41, 42]. All-benzenoid PAHs (PBAHs) whose to-
tal structure can be fully represented by aromatic sextet
rings and has no double bonds show particularly high sta-



bility, high melting points and low reactivity [39]. Bulk
graphene for instance is a PBAH.

At monohydrogenated zigzag edges the formation of
periodic aromatic rings is suppressed as illustrated in
Fig. 3. If one hexagon is aromatic, all the others are
forced into a quinoidal configuration. This suppression
of aromaticity arises at the edges but it forbids aromatic-
ity also on the inside of ZGNR, making them potentially
unfavorable. The same holds also for double-hydrogen
terminated ribbons, where not even one aromatic circle
is allowed.

In the peculiar configuration of zz(2,1), however, the
periodic aromaticity of bulk graphene is restored and the
ribbon is nearly a PBAH. This edge configuration has the
same periodicity as the aromatic sextets and does not dis-
rupt them. The resulting high degree of aromaticity is
reflected by the fact that zz(2,1) has the lowest edge en-
ergy at zero temperature of all the zigzag ribbons that we
examined. In configurations with other edge periodicity
as zz(1,1), zz(3,1), zz(4,1), and zz(5,1), some aromatic
rings with the periodicity of the edge are allowed, this
periodicity however collides with the intrinsic scheme of
aromatic rings.

Single- and double-hydrogen terminated armchair
edges both are compatible with periodic aromatic rings
whereas asymmetrically passivated edges such as ac(21)
interfere with them. In this context it is remarkable that
also the giant benzenoids described lately have mainly
armchair edges [40].

Although the analysis in terms of Clar structure has
a pure qualitative character we found it to reproduce a
good part of the energy characteristics of hydrogenated
GNR and used it as a guideline in our search for favorable
structures.

In conclusion, we have performed ab initio DFT calcu-
lations on GNR with different hydrogen-terminated edge
configurations to study their relative stability as a func-
tion of the hydrogen chemical potential. According to
our analysis, at room temperature and ambient pressure,
the monohydrogenated AGNR represents the most stable
configuration. In the region of very high hydrogen pres-
sure, the double-hydrogenated AGNR exhibits the lowest
edge energy. Between the two kinds of armchair ribbons,
there is a region where a ZGNR configuration in which
every third edge atom is double-hydrogen terminated be-
comes favorable. This structure—in contrast to single—
or double-hydrogen therminated ZGNR—does not fea-
ture magnetism. Its particular stability is explained by
the high degree of aromaticity of the structure. The much

discussed magnetic, single-hydrogen terminated ZGNRs
are likely only at very low hydrogen chemical potentials.
We are excited to see our predictions tested in actual
experiments.
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