
AstroViz: A Parallel Visualization Tool for

Astrophysical Applications

Christine Corbett Moran

2009-12-15

Abstract

Data analysis tools must keep pace with the scientific investigations that produce

the data. This is especially true in astrophysics where numerical simulations are being

pushed to higher resolution and larger scale than previously possible and scientists

are pressed to filter and synthesize results from unprecedented amounts of data. To

handle large quantities of data and the demand to visualize and analyze in real time,

an astrophysics analysis tool must function in parallel. To be useful across a variety

of sub-disciplines and simulation codes, an analysis tool must handle a wide variety

of data formats, have a short learning curve, and be extensible to additions as codes

and analysis objectives evolve. AstroViz is a data analysis and visualization tool, built

upon the existing and widely used open-source application ParaView, that addresses

these needs. AstroViz can be run either serially on a client machine or in parallel with

a client-server architecture, in which case the data reading, analysis, and rendering

for display are distributed via MPI on the server and controlled and displayed, in an

interactive 3D view, data plot, or table, on the client. AstroViz handles a variety

of common data formats including VTK legacy, Tipsy binary, HDF5, and comma

separated values and a variety of common data analysis tasks including computing

velocity dispersions, computing moments of inertia, halo finding, and data reduction

via thresholding. Since AstroViz is implemented as an plugin for ParaView, it has a

short learning curve and is easily extensible. AstroViz is an open-source and freely

available tool.

1

Contents

1 Introduction 4
1.1 Scientific visualization . 4
1.2 Visualization in astrophysics: the need for AstroViz 5

2 Fundamental Algorithmic Concepts 6
2.1 Kd-Trees . 6
2.2 Root finding . 9

3 Fundamental Concepts in Parallel Computing 10
3.1 Classification . 10
3.2 Ghost cells . 11

4 VTK and ParaView 12
4.1 VTK . 12
4.2 ParaView . 13

4.2.1 ParaView plugins . 14
4.2.2 Parallel features . 15
4.2.3 Data distribution . 16

5 AstroViz ParaView plugin 18
5.1 Graphical User Interface . 19
5.2 File Formats . 19

5.2.1 Tipsy binary reader . 20
5.2.2 Marked particle files . 20
5.2.3 Add additional ASCII attributes . 20

5.3 Data Analysis . 21
5.3.1 Profile . 21
5.3.2 Calculate principle moments of inertia 23
5.3.3 Calculate the center of mass . 24
5.3.4 Smooth particle quantities . 25
5.3.5 Finding the virial radius . 25
5.3.6 Friends-Of-Friends halo finder . 28
5.3.7 Dependencies of AstroViz filters on data distribution 28

6 Performance 29
6.1 Machines . 29
6.2 GHALO simulation . 29
6.3 Results . 29

6.3.1 Performance scaling with number of processes 30
6.3.2 Realtime rendering performance . 32
6.3.3 Performance on a large number of particles 32

2

7 Further work 35

8 Conclusions 36

9 Acknowledgments 37

3

1 Introduction

In Section 1, I provide an overview of scientific visualization, scientific visualization in as-
trophysics, and why there is a need for a common parallel, functional and extensible data
analysis and visualization tool in astrophysics. In Section 2, I review some fundamental
algorithms and data structures used throughout the implementation of AstroViz. In Section
3, I review some fundamental concepts in parallel computing which will later be built upon
in addressing the parallel analysis and visualization capabilities of AstroViz. In Section 4, I
introduce the open-source toolkits VTK[6] and ParaView[18] upon which AstroViz is built.
In Section 5, I introduce the ParaView plugin AstroViz, its features, and the theoretical
details of its implementation. In Section 6, I address questions of performance, providing
quantitative numbers obtained on the Horus visualization cluster at the Swiss National Com-
puting Center and the ZBox3 cluster at the University of Zurich. In Section 7, I give an
outlook of further work on AstroViz. Finally, in Section 8, I review the results and provide
some conclusions based on real world usage of AstroViz.

1.1 Scientific visualization

From the complex designs codifying the calendar of the ancient Mayans to scratchings in
clay tablets in Mesopotamia indicating a quantity of goods possessed, visualization has been
a powerful way to communicate numbers and mathematical entities for thousands of years.
In ancient times visualization was a complex process done by hand. The process has evolved
dramatically and with the advent of computers we have the ability to collect and analyze
more information than ever before possible. While Edwin Hubble deduced Hubble’s law from
a plot of just 24 objects, scientists push today’s computers to produce simulations of billions
of interacting objects from which they then are pressed to synthesize physical insights. The
field of scientific visualization, concerned with the display and analysis of scientific data, has
likewise evolved to adopt computers as its primary tool.

Scientific visualization can be thought of at its base as a function mapping numbers to
images, but in reality is a complex process involving several steps: filtering data, choosing
a representation (2D, 3D etc.), choosing a desired level of interactivity, and customizing
the manner in which the data is displayed. There are many programs which facilitate such
a process. A brief overview of those most commonly used in the astrophysics community
is given here. For displaying 2D or simple 3D plots, astrophysicists use programs such as
gnuplot, SuperMongo, or scripting languages such as Python, Matlab or IDL. For interactive,
possibly 3D visualization, astrophysicists use Tipsy[1], yt[23], or develop a custom tool on
a code-by-code basis. For a combination of 2D and 3D plotting capabilities, realtime and
offline analysis, scripting and graphical control astrophysicists use the applications VisIt[2]
or ParaView[18].

There are several decisions to be made in the process of scientific visualization. There
is a tradeoff between interactive visualization, which requires more computing power but
can give greater insight via the availability of immediate feedback, and offline visualization,
which can display data in more intricate detail but has a necessary delay between defining the

4

parameters of the visualization and viewing the results, due to the computational intensity
of achieving this detail. There is also a tradeoff between displaying the entire data set, which
may very well be too much for the scientist to process visually in a meaningful manner, and
displaying only a subset of the data which the scientist can analyze but which may miss
some information inherent in the overall structure. The overall goal for the scientist must
also be considered. Common aims of scientific visualization are to uncover patterns in the
data, compare the data to phenomena observed in nature, and to compare different methods,
for example simulation codes, for generating the data.

1.2 Visualization in astrophysics: the need for AstroViz

In projects such as the Code Comparison Project[10], the need for a common data visual-
ization and analysis workflow in numerical astrophysics becomes apparent. In comparing
results from different codes, it is helpful to examine the data visually. If one is to organize
a fair comparison, the same program must be used. Furthermore, if a program has the
capability to view multiple images at once and link the response to interaction with these
images, the researcher can zoom in and examine the same region of the output of different
codes, greatly enhancing ease of comparison. For these reasons, along with the powerful
analysis and parallel features and the extensibility thereof, the researchers in [10] chose Par-
aView in conjunction with developing a ParaView plugin encompassing some analysis tools
for structure identification.

As it stands today, in much of the community each code has its preferred analysis and
visualization tools, along with a custom, code specific format. With the advent of the
Hierarchical Data Format (HDF), the practice of creating a code specific format is quickly
changing to instead use this common, platform independent format, to the advantage of
researchers who wish to quickly and easily begin with data analysis and visualization of a
new code. This process is still not the de facto standard, however, meaning that much of the
community working with PKDGRAV [20], does analysis and visualization with Tipsy [1],
much of the community working with Enzo [15] does analysis and visualization with yt [23],
much of the community working with Gadget does analysis and visualization with VisIt [2],
etc.

As numerical astrophysicists move towards petascale computing, serial data analysis and
visualization tools are no longer appropriate. Simulations will not fit into a single machine’s
memory, even if pre-filtered. Moreover, as most computing is done remotely, data analysis
and visualization is most efficient in a client-server mode, where the server runs where the
data is hosted and the client runs on the researcher’s local machine, a setup which minimizes
data transfer. The challenges in parallel visualization and analysis, including client-server
connections, parallel rendering, computer graphics libraries, and a graphical user interface
are too great to be addressed by a single researcher each time a new code is developed. Yet,
each code has its own challenges and each researcher their own analysis objects, meaning
that a one size fits all solution is also unsatisfactory.

ParaView and its plugin architecture reaches the balance between these issues. ParaView
is a powerful parallel data analysis and visualization library which additionally supports

5

building libraries, called plugins, by which a researcher can easily extend ParaView’s func-
tionality without going deeply into the internals of ParaView. This architecture is desirable
because there is only one user interface to learn and functionality is easily added by these li-
braries at run time; once the relevant plugin is loaded, the features are immediately available
for use.

AstroViz is a data analysis and visualization tool, implemented as a ParaView plugin
that addresses the need of the astrophysical community to have a common, easy to learn,
and scalable data analysis and visualization tool. The AstroViz plugin adds data format
support to ParaView for reading the Tipsy binary format in parallel, reading in only a sub-
set of particles as indicated by a simple ASCII marked particle file and reading in particle
attributes via a simple ASCII format in parallel. AstroViz adds several analysis capabilities
to ParaView. These include calculating the center of mass, Friends-of-Friends halo finding,
smoothing attributes over those of neighbor particles, calculating the principle moments of
inertia, computing the virial radius, and computing the following quantities as a function of
radius: circular velocity, density, angular momentum, average radial and tangential veloci-
ties, velocity dispersion values, and average and cumulative values of attributes in the data
set. Each of these analysis tasks functions in parallel.

Since AstroViz is implemented as an plugin for ParaView, it has a short learning curve and
is easily extensible. A menu for using AstroViz features as well as common ParaView analysis
features is added to the ParaView graphical user interface and color maps comparable to
those available in Tipsy are provided. In Section 7, I detail plans to extend AstroViz’s
format handling and analysis tasks to the SPH, theoretical cosmology, and observational
astrophysics communities. AstroViz is an open-source, freely available tool.

2 Fundamental Algorithmic Concepts

In this section, I present some fundamental algorithms and concepts which will later be
built upon in the algorithmic design of the analysis features of AstroViz. First I describe
the Kd-Tree data structure, which offers an efficient way to do d-dimensional range queries.
For example, if the tree is built of three dimensional points, the points in the tree which
reside in a 3D region of space can be efficiently located, a capability which is used by the
Virial Radius finder, Friends-of-Friends Halo Finder, and Neighbor Smooth algorithms in
AstroViz. Next, I review root finding methodology, that is how to, for a given function,
efficiently find the point or points at which the function crosses zero. This methodology is
used to aid the Virial Radius finding algorithm.

2.1 Kd-Trees

Kd-Trees are a way to create a binary tree partitioning of d-dimensional space[5]. The
partitioning proceeds as follows: first a point p is chosen to be the root of the tree, then a
split is made on one of the d dimensions. Points which have a value of this dimension greater
than p’s are added to p’s right subtree while points which have a value of this dimension

6

Algorithm 1: Algorithm to build a Kd-Tree, reproduced from [9] and generalized in
a standard manner to d-dimensions.
BuildKdTree(p,depth);
Input: Set of points p of dimensionality d and current depth
Output: The root of the constructed tree contains set p
if p contains exactly one point l then

return a leaf containing l;
else

ds ←− depth mod d ; // ds is the splitting dimension

H ←− hyperplane perpendicular to ds going through l, the point with the median
ds coordinate of the points in p;
p1 ←− set of points lower than this H;
p2 ←− set of points higher than H;

end
vleft ←− BuildKdTree(p1,depth+1);
vright ←− BuildKdTree(p2,depth+1);
Create a node v storing l with vleft as the left child of v and vright as the right child of
v;
return v;

Algorithm 2: Algorithm to search a Kd-Tree, reproduced from [9] and generalized in
a standard manner to d-dimensions.
SearchKdTree(v,R,p);
Input: The root of a Kd-Tree v, a range R, and a list of points found in that range
Output: All points at leaves below v which lie in R
if v is a leaf then

if v is contained in R then
Add the point stored at v to p;
return

end

end
for vchild ∈ { LeftChild(v), RightChild(v)} do

/* Bounds(v) returns the geometric boundary of the subtree of v
based on the splitting hyperplanes. It can in principle be

stored at construction and retrieved in constant time. */

if Bounds(vchild) is fully contained in R then
Add the points in vchild subtree to p;

else if Bounds(vchild)) intersects R then
SearchKdTree(vchild, R, p);

end

end

8

2.2 Root finding

Root finding methodology is briefly reviewed here. When the derivative of a function g
is directly and efficiently computable, a root finding method such as Newton’s method[13]
which relies on it is appropriate. Newton’s method utilizes a linear approximation of the
function g and its derivative g′ to compute g(x) from a previously computed value g(xold).
The point-slope formula then gives

g(x) = g(xold) + g′(xold)(x − xold). (1)

The root of the equation g(x) = 0 is thus at

xnew = xold −
g(xold)

g′(xold)
. (2)

Newton’s method then applies this formula iteratively

xn+1 = xn −
g(xn)

g′(xn)
, (3)

until g(xn) < ǫ, for some small tolerance value ǫ. The convergence can be measured by
measuring the change in the error function from one iteration to the next. Newton’s method
converges quadratically in the error. See [13] for the full derivation of the rate of convergence
of Newton’s method.

The disadvantage of Newton’s method, while it provides relatively quick convergence,
is that the value of the derivative of the function g must be known. Another method–the
method of secants–is used to find the root of a function for which we do not have access to its
derivative or for which this derivative would be expensive enough to compute to justify the hit
in the convergence rate from using the method of secants, a hit which fundamentally stems
from using a more incomplete picture of the function g within the algorithm. Essentially it
replaces the 1

g′
term by an approximation using the secant line between the value of x at the

previous iteration and the value at the next iteration xn−xn−1

g(xn)−g(xn−1)
. Replacing 1

g′(xn)
by this

in Newton’s equation gives us the method-of-secants

xn+1 = xn −
xn − xn−1

g(xn) − g(xn−1)
g(xn). (4)

The convergence rate of this method is super-linear. See [13] for the full derivation of the
convergence rate.

A few modifications to the method of secants will give us the Illinois root finding method.
Essentially, the idea is to use a few heuristics to achieve better in-practice convergence rates
than the basic method of secants and avoid potential worst case scenarios which would
cause the method to stray far from the root. To this end, we begin with a pair of points
which bracket the root, then always keep the root bracketed by retention of the endpoints.
By keeping one endpoint negative and one positive, if the precondition that the root is

9

bracketed is satisfied before execution of an iteration, it will continue to be so afterward.
Thus, rather than simply discarding the older of the two guesses for the root’s location, we
discard the point with the same sign as g(xn+1). By only examining intervals in which the
root lies, we ensure that we never stray far from the root. The use of a second heuristic, to
artificially halve the value of g when we retain an endpoint more than once, gives the full
Illinois root finding method. This is a practice which discourages retaining an endpoint for
too long; as g is halved after each step, eventually a secant step will be taken to move the
endpoint. Thus, while the theoretical convergence rates of the method of secants and the
Illinois method are identical, in practice the two heuristics used by the Illinois method result
in most situations in faster convergence rates as compared to theoretical worst case.

3 Fundamental Concepts in Parallel Computing

In scientific computing there are often problems scientists want to address which require
too much memory, storage, or time to be run on a single modern desktop computer. High
performance computers aim to make serial computations faster and enable running processes
in parallel. One can quantify how much faster an algorithm will run on a parallel computer
with N processes via the speedup, where

Speedup =
T (1)

T (N)
(5)

and T (p) is the time it takes to execute the algorithm on p processes. Every algorithm has
some serial component so as processes are added to the computation of a parallel algorithm,
a decreasing return is seen on algorithmic speed. If s is the fraction of the algorithm that is
serial, then the algorithm will instead have the following speedup, known as Amdahl’s law,

Speedup =
T (1)

T (1)(s + 1−s
N

)
(6)

One can explore the scaling of an algorithm with both the problem size and the number
of processors. Strong scaling is the scaling of the running time with increasing number of
processors while keeping the problem size fixed. Weak scaling is the scaling of the running
time with increasing problem size and increasing number of processors–essentially how things
scale if we have every processor do the same amount of work even as we scale up the number
of processors available.

3.1 Classification

There are two types of parallelism: data parallelism and task parallelism. In data parallelism
each process runs the same code but acts on a different piece of data. In task parallelism
each process performs different operations. There are two main architectures of parallel
computers, shared memory and distributed memory machines and two corresponding multi-
platform programming frameworks to take advantage of these, OpenMP and MPI. Shared

10

memory computers have multiple processors sharing a global memory space and thus can
efficiently exchange information. Distributed memory computing clusters connect a network
of computers, each having their own local memory, which communicate via messages over
the network. Many modern clusters mix the two by using a distributed memory model but
one where the individual computers in the network have multi-core processors which operate
under a shared memory model.

OpenMP is an API which supports multi-platform shared memory multiprocessing in C,
C++ and Fortran. It is mainly used for loop parallelization and is easier to program for and
debug than parallelism using distributed memory, because in OpenMP, parallel instructions
can be gradually added, most serial code does not need changed, and the program can still be
run in serial if desired. Modern distributed memory computer clusters use MPI, which stands
for Message Passing Interface, and is a specification of an API handling communication
between computing nodes. It used to be that such an interface was written in an ad-hoc
case-by-case basis for each supercomputing architecture. This practice created a great deal
of overhead with switching architectures. Since MPI’s introduction in 1994, it has become
the de-facto standard for handling communication between different nodes of a distributed
memory computing cluster. There are many implementations of the API, most commonly
in the C or C++ languages.

3.2 Ghost cells

Ghost cells are a concept relevant to data parallelism. In designing a data parallel algorithm
sometimes it is not possible to achieve correct performance in a clean data parallel way.
Consider the external faces algorithm in which the goal is to compute the cell faces which
have no neighbors. If data is divided among processors, the naive algorithm may produce
incorrect results for instances where two neighboring cells are placed on different processes.
The introduction of the concept of ghost cells aims to solve this problem at the cost of a
minimal amount of data replication across processors.

Ghost cells are cells which belong to one processor but are nevertheless duplicated on
other processors. Typically a ghost cell is one which shares a boundary with a cell on another
process. The ghost cell is then duplicated on the boundary processes. Some algorithms may
not function correctly even in the presence of a single layer of ghost cells. We may need
to repeat this procedure, in effect creating ghost cells of ghost cells. Consider an algorithm
which requires the N nearest neighbors of a cell. For a naive implementation of this algorithm
it would only be guaranteed to function correctly in the presence of N layers of ghost cells,
as in the worst case each neighbor would reside on a different process. For situations such
as these we add the concept of a ghost cell level. A ghost cell of level 1 is a cell which shares
a boundary with a cell on another process. A ghost cell of level 2 is a cell which shares a
boundary with a ghost cell of level 1. Armed with this concept, for every algorithm we can
define a level of ghost cells which must be duplicated across processors for the algorithm
to correctly function. Typically algorithms are designed to minimize the number of ghost
cells required for correct functionality. Thus a data parallel algorithm is again achieved if
we introduce the number of ghost cells necessary for correct operation and, after computing

11

others. Some of the PKDGRAV and GASOLINE community still rely on Tipsy binaries to
store simulation output, however, and many users of Gadget2 still rely on Gadget2 binaries
for storage. To serve these communities, AstroViz provides support for parallel reading of
Tipsy binaries and in Section 7 plans are detailed for a Gadget2 binary reader. Furthermore,
some of the community relies on legacy ASCII formatted files. AstroViz supports these
although an efficiency hit is seen as a result when running in parallel.

5.2.1 Tipsy binary reader

The Tipsy binary reader reads Tipsy files in the standard (platform independent) format.
The reader is fully parallel so each process reads in only the fraction of data it is responsible
for. More precisely, each process pi reads from pi⌊

N
p
⌋ to min((pi +1)⌊N

p
⌋, N), where N is the

total number of particles in the file, given in the header of the file, p is the total number of
processors, and i ranges from 0 to p−1 indexing each process. The user can specify whether
to load all attributes defined in the Tipsy binary file or only to load in the positions of the
particles. The user can specify whether the data should be distributed spatially after being
read in, which as previously reviewed, is optimal for the operation of most filters.

5.2.2 Marked particle files

As part of the Tipsy binary reader, there is an option to read in a simple text format marked
particle file to enable the pre-selection of a subset of particles to be read in. This can reduce
the size of the data, but it has the disadvantage of being unsupported in parallel. This was a
design decision–in parallel runs ParaView’s native marking mechanism should be used. The
marked particle files are of the format where first line lists the number of particles in the
original Tipsy file, the number of gas particles in the original file, and finally the number of
star particles in the original file, each separated by a space. The number of dark particles
in the original file can then be inferred. The Tipsy binary file must match these numbers or
reading will abort. Beginning on the second line of the marked particle file a marked-particle
index is listed, one index per-line.

5.2.3 Add additional ASCII attributes

The Add Additional Attribute filter offers the user the option to read in an ASCII file which
on the first line lists the number of particles in the file, then, beginning with the second line,
additional float attributes are listed, one per line. A set of points equal to the number of
particles in the file must have already been loaded in. This filter is quite basic, but useful for
those who quickly want to integrate data from external processing applications into a small
or medium sized file. This filter operates in parallel although it operates on an ASCII file
and thus is inefficient in comparison to reading in a binary file. Its parallel implementation
is simple: each process sorts the list of the global ids of particles it is responsible for. The
sorting operation is O(N/p) log(N/p) where N is the number of particles in the entire data
set and p is the number of processors. Due to the format of the additional attribute file,

20

the ids should correspond to the position in the file at which the attribute resides plus one.
Then each process starts at the beginning of the file and counts until it reaches the first id
it is responsible for, an operation which is O(N) worst case, and finally the ids are searched
for in order, an operation which is of order O(N) as well.

5.3 Data Analysis

AstroViz adds several analysis capabilities to ParaView. The Profile filter calculates a va-
riety of physical quantities, averages, and cumulative values as a function of radius. The
Principle Moments of Inertia filter calculates the principle moments of inertia of a collec-
tion of particles. The Center of Mass filter calculates the center of mass of a collection
of particles. The Neighbor Smooth filter smooths values over neighbor particle quantities,
producing an additional estimate of the local density for each particle. The Virial Radius
filter calculates the radius from a selected center which corresponds to a specific overdensity.
Finally, the Friends-Of-Friends filter employs a heuristic to quickly identify candidates for
groups of objects which are gravitationally bound.

5.3.1 Profile

The output of the Profile filter is the form of a table which can be exported for further
analysis in an external program or used within ParaView to perform realtime analysis tasks.
Plots can also be generated as a post-processing step. The user interface for the Profile
command allows the user to select a center around which to profile via the GUI. The user
can select a single point, in which case the selected point is considered to be the center,
can select a line, in which case the center is defined to be the midpoint of the line, or can
manually enter the coordinates of the center point. The user can also select the number of
bins to be used. The following quantities are produced by the Profile filter and included
in the table: radius, number in bin, density, cumulative mass M(< r), circular velocity
√

M(< r)/r, average velocity

〈"v〉 =
1

N

N
∑

i=1

"vi, (7)

average radial velocity

〈"vrad〉 =
1

N

N
∑

i=1

"vrad,i (8)

where

"vrad,i =
"vi · "ri

|"ri|
2 ri, (9)

average tangential velocity

〈"vtan〉 =
1

N

N
∑

i=1

("vi − "vrad,i), (10)

21

average velocity dispersion, radial velocity dispersion, and tangential velocity dispersion,
where the dispersion is defined as

"σv =

√

√

√

√

1

N

N
∑

i=1

("vi − 〈"v〉)2 =

√

√

√

√

1

N

N
∑

i=1

"v2
i − 〈"v〉2, (11)

and average angular momentum

"j =
1

N

N
∑

i=1

"ri × "vi. (12)

The parallel implementation of the Profile command is straightforward. Initially a cal-
culation is done in parallel to discover an accurate estimate of the upper-bound for the
maximum radius from the selected center within the dataset. This is done by having each
process compute its maximum radius and then having a single process compare them all
to discover the true global maximum. The computation of the maximum radius is a strict
upper bound, as the bounding box of the data on each process is used, rather than com-
puting the radius of each particle which would be O(N), where N would be the maximum
number of particles residing on a process over all processes. The bounding box of the data
on each process is kept track of as part of the reading process so it is already computed and
is O(1) to access. This result will be slightly different than that obtained if run serially, as
the bounding boxes may be tighter on subprocesses than an overall bounding box. But, if
there is any change, the parallel version is a tighter upper bound for the maximum radius
than the serial version and is always guaranteed to be greater than or equal to the true max-
imum radius over all points within the dataset to the selected center. From the maximum
radius upper-bound and the number of bins requested by the user, the extent of each bin is
computed and is equal to

bin spacing =
maximum radius estimate

total number of bins
. (13)

After the initial setup, the calculation is ready to proceed. If "c denotes the selected center
and "x the coordinates of a particle, we can compute which bin to which the particle belongs
to via the equation

bin number =

⌊

|"x − "c|

bin spacing

⌋

. (14)

Referring again to the equations for profiled quantities above we see they invariably include
a summation of a certain quantity over all particles. As we can calculate which bin a
given particle belongs to independently of the other particles and the summation operator is
commutative and associative, each processor can independently calculate the sum and we can
in the end combine the sum from each processor before performing any final computations
on these sums. More precisely, each processor loops over all of its particles, and for each
particle updates the appropriate bin and bin attributes by adding the particle’s attributes
to those in the bin. At the very end, the root process combines the sums from all processes

22

for all bins and then for each bin computes the final value of the profiled quantities which is
a function of these summations alone. Thus this last operation is O(p) and the entire Profile
algorithm is itself O(N/p).

5.3.2 Calculate principle moments of inertia

The Principle Moments of Inertia command is implemented according to the standard cal-
culation of the principle moments of inertia of N bodies, reviewed here. The moment of
inertia scalar is considered to be

I =
n

∑

1

mi(x
2
i + y2

i + z2
i) (15)

and the moment of inertia tensor is

I =





I11 −I12 −I13

−I21 I22 −I23

−I31 −I32 I33



 (16)

with the following components

I11 = Ixx =
N

∑

k=1

mk(y
2
k + z2

k), (17)

I22 = Iyy =
N

∑

k=1

mk(x
2
k + z2

k), (18)

I33 = Izz =
N

∑

k=1

mk(x
2
k + y2

k), (19)

I12 = Ixy =
N

∑

k=1

mkxkyk, (20)

I13 = Ixz =
N

∑

k=1

mkxkzk, (21)

and

I23 = Iyz =
N

∑

k=1

mkykzk. (22)

To calculate the principle moments of inertia, we utilize the fact that I is real and symmetric,
and thus via the finite dimensional spectral theorem, know it can be diagonalized into the
form

I =





I1 0 0
0 I2 0
0 0 I3



 . (23)

23

The eigenvalues of I are the principle moments of inertia and the eigenvectors are the prin-
ciple axes.

The parallel implementation of the computation is straightforward. Referring again to
the equations for the moment of inertia tensor above, we see they invariably include, as with
the Profile filter, a summation of a certain quantity over all particles. As the summation
operator is commutative and associative, again as with the Profile filter, each processor
can independently calculate the sum, and we can in the end combine the sum from each
processor before performing any final computations on these sums. More precisely, each
processor loops over all of its particles, and for each particle updates its local moment of
inertia tensor. At the very end the root process combines the tensors from all processes
by summing each component and finally computes the eigenvalues and eigenvectors for this
symmetric 3 × 3 tensor. Thus the Principle Moments of Inertia algorithm is O(N/p).

The Principle Moments of Inertia filter takes no arguments, other than a specification of
which data array contains the mass. The eigenvectors are displayed on screen by displaying
three vectors, colored by whether they are the first, the second, or the third moment. These
vectors are the eigenvectors scaled by the total maximum distance from the defined center
to the edge of the cube to be in a comparable size to the simulation, whatever scale it may
be, and thus easily visible in comparison to the simulation. The eigenvectors can also be
displayed in the spreadsheet view within ParaView and optionally exported as a comma
separated value file for storage and further analysis.

5.3.3 Calculate the center of mass

The center of mass "c of N particles, where "xj is the coordinate vector of the jth particle, is

"c =

∑N

j=1 mj"xj
∑N

j=1 mj

. (24)

The parallel implementation of this filter is again straightforward and proceeds in a
similar manner to both the Principle Moments of Inertia and Profile filters. Referring to
the equation for the center of mass above, we see that it is computed by dividing the result
of two summations of a certain quantity over all particles. As the summation operator is
commutative and associative, as with the profile and moment of inertia filters, each processor
can independently calculate the sum and we can in the end combine the sum from each
processor before performing the division of the result of the two summations to compute
the final result. Thus this last operation is O(p) and the entire Center of Mass algorithm
is itself O(N/p). The Center of Mass filter takes no arguments other than a specification
of which data array contains the mass. The center of mass computed is displayed on screen
by displaying a single point. It can also be displayed in the spreadsheet view and optionally
exported as a comma-separated-value file for storage and further analysis.

24

5.3.4 Smooth particle quantities

The basic idea of the Neighbor Smooth filter is to produce an estimate of the local density for
particle data or to smooth over a specific attribute with the goal of reducing noise. Locally,
the Neighbor Smooth filter builds a Kd-Tree, then for each particle it finds the N nearest
neighbors, averaging the particle’s attribute value with those of the neighbor particles to
find smoothed variable value for the particle in question. For those quantities which need a
volume to be computed (e.g. density), the volume is considered to be the sphere around a
point with radius of the outermost neighbor point.

The parallel implementation of this feature simply makes each process responsible for
creating smoothed values for the particles that reside on its process. No smoothing is cur-
rently done across processes, which can produce seams in the smoothed values at processor
boundaries. In AstroViz 2.0 these problems, as well as issues of efficiency, will be addressed
by implementing a new, more efficient algorithm and making use of ghost cells, duplication
of particle data across processor boundaries, to handle situations where neighbor particles
may be across a particle boundary. An outline of these steps is given in Section 7.

5.3.5 Finding the virial radius

Following[7], the tensor virial theorem relates the total kinetic energy, the thermal energy,
the gravitational potential energy and the magnetic energy of a system. In its tensor form,
it states that

1

2

dI2
jk

dt2
= 2Tjk + Πjk + Wjk (25)

where the inertia tensor I (note this is distinct from the tensor we previously referred to
as the moment of inertia tensor), contributions to the kinetic energy tensor from ordered
motion T, contributions to the kinetic energy tensor from random motion Π, and potential
energy tensor W are defined as

Ijk ≡

∫

d3xρxjxk, (26)

where ρ is the density and the integral is to be taken over all space,

Tjk ≡
1

2

∫

d3xρv̄j v̄k, (27)

Πjk ≡

∫

d3xρσ2
jk, (28)

where σ2
jk is the velocity dispersion tensor, and

Wjk ≡ −

∫

d3xρ(x)xj

∂Φ

∂xk

(29)

where Φ is the potential. The tensor statement of the virial theorem can be derived by
solving the integral form of the Euler equation considering Ampere’s law, the continuity
equation and the Poisson equation. Refer to [7] for full details of the derivation.

25

Since we often approximate e.g. galaxies as time independent, the left side is zero in
many situations. We can further simplify the equation by considering the virial theorem in
its scalar form, obtained by taking the trace of the potential-energy tensor, to obtain the
total potential energy W . Furthermore, it can be shown that K ≡ trace(T) + 1

2
trace(Π)

represents the kinetic energy. If we consider the system to be in steady state then Ï = 0 and
thus the trace of the statement of the tensor virial theorem becomes

2K + W = 0, (30)

a vast simplification over the tensor virial theorem. The virial radius is formally the radius
at which virial equilibrium holds. In practice this radius can be hard to compute so is often
approximated by the radius at which the density is equal to a constant α times the critical
density ρcrit = 3H2

8πG
. The critical density is the density of matter required for the universe

to be flat, a model which is observationally favored. Typically, α = 200 is chosen in the
literature

The Virial Radius finder filter in AstroViz allows the user to specify αρcrit as well as the
center from which to search specified in a similar manner to the profile filter. It then runs
a root finding algorithm, the Illinois root-finding method[13], to search for the radius from
the specified center at which the density is equal to the specified density with an additional
heuristic: that the virial radius is located on a portion of the density curve with a negative
slope. This second heuristic gives us a best guess approach to bracketing the root. Bracketing
the root is important as the density as a function of radius is not a monotonic function and
thus can have multiple roots; if the initial points we feed the Illinois root finding method
bracket multiple roots then the method may fail.

Since the Illinois method is used to find the virial radius we first need a bracketing pair.
As the function is non-monotonic, we do not know this a priori and must search for it
as well. To search for a good bracketing pair, yet another heuristic is used, namely the
softening radius, which can be specified by the user but is in principle a property inherit to
the simulation being visualized. This is a good heuristic as it gives us a radius below which
it is physically meaningless to probe for a given location. The search for a pair of points
which bracket the virial radius is then done using the Fibonacci search algorithm, that is
to say it is done via a divide-and-conquer algorithm by searching for a section in which our
heuristic that the virial radius is located on a portion of the density curve with a negative
slope is satisfied. Pseudocode for this algorithm is provided in Algorithm 3. We continue
the search until we reach a point where the density decreases for three successive sequences
and in this case run the root finder with the first and last point in the sequence as the
initial brackets to find the virial radius. If the bracketing heuristic is not satisfied or if the
virial radius is not found with the bracket guess, then the algorithm simply prints a warning
message and returns. Psuedocode for the virial radius algorithm is provided in Algorithm
4.

This algorithm functions in parallel by computing the density within a given radius in
parallel. Each process first builds a Kd-Tree representation of its data. Then the process
uses the Kd-Tree to find all points which reside within the sphere of the proposed radius

26

and sums their mass. The density is found by combining the result of this summation for
all processors and finally dividing by the volume of the sphere given by the proposed radius.

Algorithm 3: Algorithm to bracket the root of the density function.

Input: A softening value, Center from which to search, a Kd-Tree representing the
dataset which is queryable in parallel

Output: A pair of points bracketing the root of the density function
BracketRoot(softening,center,tree);
/* Bounds(tree) returns the geometric 3d-bounding box of the tree.

MaxDistance(center,bounds) returns the maximum distance from the

center to a corner of the bounding box. */

rmax ←−MaxDistance(center,Bounds(tree));
r[3] ←− {softening, softening, softening};
ρ[3] ←− {0, 0, 0};
fib[2] = {1, 1};
while r2 ≤ rmax do

if ρ[0] < ρ[1] < ρ[2] then
return {r[0], r[2]};

end
fibnext ←− fib[0] + fib[1];
rnext ←− fibnext · softening;
ρnext ←−Density(rnext,center,tree);
/* ShiftLeftUpdate(array,element) moves all elements in array one

index to the left, throwing out the first, and adds element to the

end. */

ShiftLeftUpdate(fib,fibnext);
ShiftLeftUpdate(r,rnext);
ShiftLeftUpdate(ρ,ρnext);

end
return (0, rmax); // Unable to find a tight bracket, returning entire

interval

Algorithm 4: Algorithm to find the virial radius.

Input: The critical density, a softening, a center from which to search, a Kd-Tree
representing dataset which is queryable in parallel

Output: The radius from the center at which the density equals the critical density,
NULL if no such radius is found

FindVirialRadius(ρcrit,softening,center,tree);
(bl, br) ←− BracketRoot(softening,center,tree);
r ←−Illinois(DensityMinusCriticalDensity,ρcrit,center,tree,bl,br);
return r; // r is NULL if not found

27

5.3.6 Friends-Of-Friends halo finder

A halo can be considered as a complete group of objects gravitationally bound to each
other. Identifying halos is an important component of many analysis tasks in astrophysics
as analyzing their properties can give insight into a wide variety of topics including galaxy
formation, star formation, and gravitational lensing, and provides one of many connections
between astrophysical simulations and observations[7]. There are a wide variety of different
algorithms for identifying halos. Spherical Overdensity[12], AHF[11], SKID[20], and Friends-
of-Friends[8] are some of the most frequently used. The variety in halo-finding algorithms
stems from computational complexity incurred by using the simple definition above. In
principle, calculating the gravitational forces at play for N particles is O(N2) and is compu-
tationally prohibitive for large N . Because of this, a halo-finding algorithm typically makes
some approximations, meaning internally it often uses a modified definition of what a halo
is considered to be for efficiency considerations.

The Friends-of-Friends halo finding algorithm[8] (hereafter FOF) as mentioned above is
the most frequently used halo finding algorithm at present because of its simplicity and
efficiency. It changes, for efficiency considerations, the definition of a halo to be the set of
objects for which every object in the set is within a certain length scale b, called the linking
length, from at least one other member in the set. While this definition is purely geometrical,
it is conceptually simple and has only one free parameter. If an efficient method is used to
discover if there are objects located within sphere of radius b of a given object, the algorithm
is itself efficient. Disadvantages of this algorithm are that it is un-satisfyingly non-physical,
it is impossible to find substructure i.e. sub-halos of a halo, and it is prone to link two halos
together via a linking bridge[11].

The Friends-of-Friends Halo Finder filter in AstroViz is an FOF halo finder. It functions
in parallel by constructing a Kd-Tree on each process. Using this, it recursively maps all
points which reside within a linking length of another point to a single unique global id, one
unique global id per set of objects for which every object in the set is within a linking length
from at least one other member in the set. This algorithm is efficient as we need only inspect
the particles at a particular node in the Kd-Tree and those which reside at nodes within a
sphere of distance b of that node.

5.3.7 Dependencies of AstroViz filters on data distribution

AstroViz Filters which are independent of data distribution are the Tipsy binary reader,
Center of Mass filter, Profile filter, and the Principle Moments of Inertia filter. There are
a few AstroViz Filters where data distribution will change result. Currently the Friends-of-
Friends Halo Finder and the Neighbor Smooth filter outputs will be nonsensical in parallel
if data is not first spatially distributed as they rely on information about neighbor particles
but only have capability to consider particles residing on the same process as neighbors.
AstroViz 2.0 will fix this, but for now the filters may be used, but only with caution. These
steps are detailed in Section 7. Finally, the marked particle file option of Tipsy binary reader
feature does not function in parallel under any circumstances.

28

6 Performance

In this section I address the performance of AstroViz filters, providing quantitative num-
bers obtained on the Horus visualization cluster at the Swiss National Computing Center
and the ZBox3 cluster at the University of Zurich to illustrate the scaling of AstroViz algo-
rithms across a variety of problem sizes, number of processors available, and available cluster
hardware.

6.1 Machines

The ZBox3 supercomputer at the University of Zurich consists of 144 nodes, each with quad
core 2.4 GHZ Intel CPUs, Dolphin SCI highspeed interconnects, and 8GB main memory
per node. Benchmarks for AstroViz on ZBox3 were done with ParaView 3.6 with software
rendering via the OSMesa library.

The Horus HP-XC SVN Visualization cluster at the Swiss National Supercomputing
Center (CSCS) has 16 nodes, each with dual core 2.4 GHz AMD Opteron Processor 250 and
two 4x Infiniband interconnects. Ten nodes have 8GB main memory, five have 16GB, and
one has 32GB for a total of 192GB. Each node has two NVIDIA Quadro FX 4500 GPUs.
Benchmarks were done with ParaView 3.6 with GPU rendering enabled. When a number n
of processors is quoted for Horus this means that n CPUs and n GPUs are used.

6.2 GHALO simulation

GHALO is a high resolution cosmological simulation calculating the structure of the Galactic
dark matter halo.[19] At full resolution, it evolves over three billion dark matter particles from
the initial conditions given by the cosmic microwave background radiation to the present.
Benchmarks of AstroViz data analysis features were done on GHALO at three different
resolutions, the highest with 3,057,221,615 particles (hereafter GHALO B3), the second
highest with 141,232,694 particles (hereafter GHALO B2), and the lowest with 11,254,149
particles (hereafter GHALO B1). AstroViz analysis tasks were benchmarked on the ZBox3
and Horus supercomputers.

6.3 Results

The following timings were made: first I examined the performance of each AstroViz filter
versus the number of processors used for the two lower GHALO resolutions. Next I compared
the performance on a CPU cluster (ZBox3) to a combined CPU and GPU cluster (Horus)
on the two lower resolutions. Finally, I examined the performance analyzing the highest
resolution GHALO B3 simulation on 512 processors of the ZBox3.

29

6.3.1 Performance scaling with number of processes

The performance of various AstroViz filters scaling with number of processors available for
the two lower GHALO resolutions is depicted in Figures 13(a)-13(g). For the Tipsy binary
reader, the performance is depicted in Figure 13(a). We see that an order of magnitude
more particles for the same number of processors results in less than an order of magnitude
more time to read in the file for the lowest number of processors used. There is a critical
processor number, 100, for which at both resolutions reading time is minimized. After this
critical point reading time increases, presumably because of communication overhead in
preparing the final image for display.

For the trivially data parallel AstroViz algorithms, namely the Principle Moments of
Inertia, whose performance is depicted in Figure 13(b), Center of Mass, whose performance
is depicted in Figure 13(c), and Profile, whose performance is depicted in Figure 13(d),
filters, there is a general decrease in an already low running speed as the number of processors
is increased, up to a value of 200. Then there is a gradual increase, presumably due to
communication overhead, as the number of processors increases to 500, but this increase
in running time is small. It appears in both cases that the curves for both resolutions are
asymptoting to the same value. We see that an order of magnitude more particles for the
same number of processors results in nowhere near an order of magnitude more time to run.

For the algorithms which rely on Kd-Trees, namely the Neighbor Smooth, Virial Radius
finder, and the Friends-of-Friends Halo Finder filters, we get a variety of speedups depending
on whether the filter needs to communicate with other processes or operates only on its local
Kd-Tree. The Friends-of-Friends Halo Finder and Neighbor Smooth filters operate only on
their local Kd-Tree. Thus, as the number of processors increases there is no communication
overhead to contend with and the Kd-Tree each process is responsible for simply gets smaller
providing faster searching time and a faster running time for the algorithm. This matches
what we see in the running times of these algorithms, depicted in Figure 13(e) and Figure
13(f) respectively.

On the other hand, the Virial Radius filter relies on being able to find quantities inherent
to particles across all processors which reside within a certain radius from a given center.
This means that the processors must communicate and if we were to scale the number of
processors up indefinitely we would reach the limit of one particle per processor. In this limit
there is a great deal of communication required each time the algorithm needs to find all
particles within a given radius; one piece of data for every point within the radius would have
to be sent. So with this algorithm we expect a critical number of processors to be optimal
for a given problem size. This optimal number is the one which has enough processors to
reduce the size of the Kd-Trees on each process and speed up search time yet still has enough
particles per processor to take advantage of locality and being able to collect results for many
particles local to a process reducing communications overhead. This matches what we see
in the running time of this algorithm, depicted in Figure 13(g). The optimal number of
processors for the lower GHALO resolution is around 50, after which the running time slowly
but steadily increases with number of processors. The optimal number of processors for the
higher GHALO resolution is around 150, after which it exhibits the same behavior as the

30

lower resolution, slowly increasing with the number of processors.

6.3.2 Realtime rendering performance

Figure 14 depicts the performance of the ZBox3 CPU cluster and that of the Horus com-
bined CPU and GPU cluster on a rendering benchmark that consists of a scripted realtime
interaction sequence, meant to mimic typical tasks the user might do involving rotations
of the geometry and zooming in scale. For the lower B1 resolution, peak rendering perfor-
mance is at 28 CPUs or 28 CPUs and 28 GPUs for the respective clusters. For the higher
B2 resolution, peak performance is achieved at 250 CPUs on ZBox3 or 28 CPUs/GPUs (the
maximum available on Horus). While Horus shows a steady decrease in rendering time as
CPUs/GPUs are added, ZBox3 shows there is a turnaround, after which adding more CPUs
while keeping the problem size fixed is actually detrimental to the rendering speed. This
turnaround would likely be seen in a CPU/GPU cluster as well, were enough nodes avail-
able. Overall, a modest increase in the number of CPUs or CPU/GPU pairs available over
a single CPU or CPU/GPU pair shows a vastly improved performance. After this initial
improvement, the returns are diminishing and in some cases nonexistent even as processing
power is added.

Figure 15 depicts a close-up of the performance on the Horus cluster compared to the
performance on the ZBox3 cluster. From this we see that when enough GPUs are available,
namely more than 4 for the B1 resolution and more than 8 for the B2 resolution, performance
of the CPU/GPU cluster is generally better than that of the CPU only cluster, as one might
expect. This gain in only seen in a window however, after which the performance of the
two becomes comparable as the number of CPUs or number of CPUs/GPUs is increased,
respectively, and appear to asymptote to the same line for both resolutions. The increased
rendering speed in the window in which the CPU/GPU cluster wins is modest. However, it
can be up to 15% of the total rendering time which is significant for large rendering times.

6.3.3 Performance on a large number of particles

Comprehensive performance tests were not carried out for the highest resolution of GHALO
on Horus or ZBox3 because the memory requirements inherent in visualizing and analyzing
a 3 billion particle file made it prohibitive to reduce the number of nodes of ZBox3 used
below 64. However, here I present a feasibility demonstration of usage of AstroViz features
on the full resolution GHALO B3 given enough resources, namely 512 processors of ZBox3.
The B3 file took a full 38 minutes to read in, a significant increase over the lower resolution
files, but the AstroViz algorithms as well as the rendering benchmark did not show the same
significant increase in running time. Figure 16 depicts the histogram of read time versus
number of processes of the B3 file being read across 512 processors. We see about half the
processors took 38 minutes to read the file but the other half took less time. Further work
would have to be done to investigate this disparity and its origins whether in hardware or
in communication lag. But it is interesting to note that some processors managed to read
their potion of the data a full four times faster despite the fact that each process is assigned

32

the same amount of data.
Figure 17 depicts the histogram of the time execution of of the Principle Moments of

Inertia filter vs. number of processes executed on the B3 resolution across 512 processors.
Here we can see there is not much variation–all processors finish between 8 and 9 seconds.
For this number of processors, the Principle Moments of Inertia filter finished in .83 seconds
for the intermediate GHALO resolution. Thus we see that increasing the problem size by an
order of magnitude in this situation has increased the running time of this filter by an order
of magnitude as well.

The rendering benchmark performance on 512 processors on the high resolution B3 file
was 141.33 seconds, that of the B2 file was 75.64 seconds, and that of the B1 file was 94.94
seconds, not an order of magnitude from one resolution to the next in either case. However, if
we compare to peak performance on the rendering benchmark on the B1 and B2 resolutions,
we compare to 32 processors at 6.95 seconds and 256 processors at 22.08 seconds respectively.
Here we see that by increasing the number of processors by an order of magnitude from
the peak performance on B1 as we increase the file size by an order of magnitude, we
again achieve optimal performance, which is approximately 3 times the optimal performance
of the lower resolution file. From this we can hazard a guess that optimal performance
on the rendering benchmark for B3 resolution would be achieved for approximately 2560
processors and would be approximately 68 seconds. This ballpark estimate agrees well with
official ParaView recommendations to, in the case of unstructured data, try to have enough
processors available such that there are 250,000-500,000 cells (particles in our case as there
is one particle per cell) per processor with a maximum of 1,000,000 cells per processor. For
3 billion particles, as in the B3 resolution, this gives us the estimate that a minimum of 3000
processors should be used for optimal performance.

Figure 16: Read Time GHALO B3 on 512 Processors.

34

Figure 17: Principle Moments of Inertia filter executed on GHALO B3 on 512 Processors.

7 Further work

There is much potential for AstroViz to expand and refine its functionality. First and
foremost is the incorporation of support for additional file formats to make AstroViz of use
to a wider community. For the observational astronomy community, support for the FITS
format is crucial, for the N-Body community, support for Gadget binaries is an oft requested
feature, for the SPH and AMR communities a tighter integration with simulation output is
necessary, and with the introduction of new simulation codes further formats may need to
be added. Additionally, while ParaView supports reading in HDF5 files natively, it requires
the user to first create an XML file describing the contents of the HDF5 file. This can be a
barrier to entry for some users and can be done away with if something is known about which
code produced the HDF5 file by automatically wrapping the HDF5 output of that code as
part of a custom reader. Each AstroViz feature currently available will continue to function
on the data read in by additional or external data and the need for additional functions will
expand as the types of data available to be loaded increases and in turn increases the number
of domains for which AstroViz is a useful analysis tool.

Secondly, AstroViz analysis tasks which are currently geared toward those involved in
analyzing N-body simulations will be improved upon and expanded to enfranchise the SPH,
theoretical cosmology, and observational communities. For the SPH community additional
smoothing capabilities and techniques for volume rendering are important to include. For the
theoretical cosmology communities, support for more advanced statistical operations such
as generating correlation functions is a requested feature. For the observational astrophysics
communities, support for pixel-by-pixel operations such as finding the summation of pixel
values in a given area selected by the user, combining images taken at different wavelengths,
correctly handling and utilizing metadata associated with the images, and support for finding
connected regions of pixels which satisfy a certain functional distribution will be added. This
area of development is especially exciting as the observational community, not accustomed

35

to dealing with issues in high performance computing on a daily basis, currently uses a
smattering of tools which do not scale to larger images and more complex tasks, meaning
that there is great potential for AstroViz to work with this community to quickly improve
the observational astrophysics analysis workflow.

Thirdly, the analysis tasks which currently do not use ghost cells but formally require
some handling of border process cells, namely the Neighbor Smooth and the Friends-of-
Friends Halo Finder filters will be improved either by algorithmically doing away with the
necessity to use ghost cells in the first place or by using ghost cells in the end where necessary.

Finally, efficiency is a primary consideration in high performance computing, both in
time and in space. For the AstroViz Profile and Neighbor Smooth filters, running time can
be long for a low number of processors as shown by the performance analysis graphs. This
likely stems from some communications inefficiencies in the former case and an inefficient
algorithm in the latter. Optimizations will be made in both cases. For the Tipsy binary
reader and other filters which create additional data arrays, space is a consideration and
giving the user more control over which variables to read in and which to compute during
analysis tasks can mitigate wasting space with data arrays which the user knows he or
she will not utilize during an analysis workflow. Each of these exciting developments in
AstroViz–increasing formats handled, accuracy, the number of analysis functions available,
and efficiency–is already underway as a component of AstroViz 2.0 which will be released in
March 2010.

8 Conclusions

In this thesis I introduced AstroViz, a fully parallel open-source visualization and analysis
tool. I reviewed the need for AstroViz in the astrophysical community, introduced the chal-
lenges faced in scientific visualization, and presented some theoretical background in data
structures, root-finding algorithms, and parallel computing necessary to follow the details of
the implementation of AstroViz features. I outlined the toolkits VTK and ParaView, upon
which AstroViz is built, and described the theoretical and practical details of each AstroViz
feature. Finally, I presented a collection of performance benchmarks and showed Astro-
Viz analysis tasks performing well across a variety of problem sizes, number of processors
available, and available cluster hardware.

By enabling the astrophysical community to have ready access to a visualization and
analysis tool which is fully functional in parallel, the processing of higher resolution simu-
lations than ever before is possible. As the resolution of simulations increases so does the
ability of the simulation to capture the physics actually at play in reality. Thus the scientist
visualizing and analyzing these simulations will have unprecedented insight into the physical
phenomena. With the advent of a standard and scalable analysis and visualization tool freely
available to the astrophysics community, the scientist will be able to fully immerse him- or
her-self in the data concentrating on developing an understanding of the physical processes
at play in the universe rather than on the technical machinery enabling said immersion.

For the full source code and documentation of AstroViz 1.0, details of the installation

36

process, and a comprehensive set of tutorials addressing usage of each AstroViz feature and
setup on a client or a server machine, the reader is referred to the AstroViz website[4].

9 Acknowledgments

I would like to acknowledge Dr. Joachim Stadel and Doug Potter for many useful conversa-
tions which contributed to AstroViz’s algorithmic design, Jean Favre and the Swiss National
Supercomputing Center (CSCS) for providing use of the CPU/GPU cluster Horus, Lucy
Moran and Jonathan Coles for providing editorial feedback, and finally Berk Geveci, the
team at Kitware Inc., and the ParaView mailing list for help related to ParaView and VTK
development and integration of AstroViz into the ParaView distribution.

References

[1] http://www-hpcc.astro.washington.edu/tools/tipsy/tipsy.html.

[2] https://wci.llnl.gov/codes/visit/home.html.

[3] http://www.kitware.com/.

[4] http://www.itp.uzh.ch/~corbett/astroviz/astroviz.html.

[5] Andrew Moore. A tutorial on kd-trees. Extract from PhD Thesis, 1991. Available from
http://www.cs.cmu.edu/simawm/papers.html.

[6] L. S. Avila, S. Barré, R. Blue, D. Cole, B. Geveci, W. Hoffman, B. King, C. C. Law,
K. M. Martin, W. J.Schroeder, and A. H. Squillacote. The VTK User’s Guide. Kitware,
Inc., Columbia, 2006.

[7] J. Binney and S. Tremaine. Galactic Dynamics. Princeton University Press, Princeton,
NJ, 2008.

[8] M. Davis, G. Efstathiou, C. S. Frenk, and S. D. M. White. The evolution of large-
scale structure in a universe dominated by cold dark matter. Astrophysical Journal,
292:371–394, May 1985.

[9] Mark de Berg. Computational Geometry: algorithms and applications. Springer, 2000.

[10] K. Heitmann, Z. Lukić, P. Fasel, S. Habib, M. S. Warren, M. White, J. Ahrens,
L. Ankeny, R. Armstrong, B. O’Shea, P. M. Ricker, V. Springel, J. Stadel, and H. Trac.
The cosmic code comparison project. Computational Science and Discovery, 2008.

[11] Steffen R. Knollmann and Alexander Knebe. AHF: AMIGA’S Halo Finder. The Astro-
physical Journal Supplement Series, 182(2):608–624, 2009.

37

[12] C. Lacey and S. Cole. Merger Rates in Hierarchical Models of Galaxy Formation - Part
Two - Comparison with N-Body Simulations. R.A.S. MONTHLY NOTICES, 271:676,
December 1994.

[13] John F. Monahan. Numerical Methods of Statistics. Cambridge University Press, Cam-
bridge, UK, 2001.

[14] Kenneth Moreland. IceT Users’ Guide and Reference. Sandia National Laboratories,
2000.

[15] Brian W. O’Shea, Greg Bryan, James Bordner, Michael L. Norman, Tom Abel, Robert
Harkness, and Alexei Kritsuk. Introducing Enzo, an AMR Cosmology Application.
2004.

[16] Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit, 4th Edition.
Kitware, Inc., Columbia, 2006.

[17] Volker Springel, Naoki Yoshida, and Simon D. M. White. GADGET: A code for colli-
sionless and gasdynamical cosmological simulations. 2000.

[18] Amy Henderson Squillacote. The ParaView Guide. Kitware, Inc., Columbia, 2007.

[19] J. Stadel, D. Potter, B. Moore, J. Diemand, P. Madau, M. Zemp, M. Kuhlen, and
V. Quilis. Quantifying the heart of darkness with GHALO–a multi-billion particle
simulation of our galactic halo. 2008.

[20] Joachim Stadel. Cosmological N-Body Simulations and Their Analysis. PhD thesis,
University of Washington, 2001.

[21] P. J. Teuben, J. Stone, and T. Gardiner. Athena: a Grid-Based Code for Astrophysical
Gas Dynamics. In Astronomical Data Analysis Software and Systems XVI, volume 376
of Astronomical Society of the Pacific Conference Series, page 93, October 2007.

[22] Romain Teyssier. Cosmological Hydrodynamics with Adaptive Mesh Refinement: a new
high resolution code called RAMSES. 2001.

[23] Matthew Turk. Analysis and Visualization of Multi-Scale Astrophysical Simulations
Using Python and NumPy. In Proceedings of the 7th Python in Science Conference,
pages 46 – 50, Pasadena, CA USA, 2008.

38

