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Course Outline
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Monday Tuesday Wednesday Thursday Friday

Lecture 1
10-10h45
Philip

Lecture 4
10-10h45
Philip

Lecture 7
10-10h45
Artur

Lecture 10
10-10h45
Artur

Lecture 13
10-10h45
Johan

Lecture 2
11-11h45
Philip

Lecture 5
11-11h45
Philip

Lecture 8
11-11h45
Artur

Lecture 11
11-11h45
Artur

Lecture 14
11-11h45
Johan

Lunch - Mensa Lunch - Mensa Lunch - Mensa Lunch - Mensa Lunch - Mensa

Lecture 3
13h00-13h45
Philip

Lecture 6
13h00-13h45
Philip

Lecture 9
13h00-13h45
Artur

Lecture 12
13h00-13h45
Artur

Lecture 15
13h00-13h45
Johan

Exercise Class
14h30-16

Exercise Class
14h30-16

X-ray scattering

Neutron Scattering

Resonant x-ray scattering

Neutron Lectures:
 7: Neutrons & Scattering to 

Determine Structure
 8: Inelastic Neutron Scattering to 

Investigate Dynamics
 9: Magnetic Scattering
10: Neutron Polarization Analysis
11: Studying quantum matter for 

nanoscale applications
12: Neutron Instrument Development
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Lecture 9: Inelastic Neutron Scattering to Investigate Dynamics

Theoretical Background

• Scattering from time dependent structures

• The correlation function and quasi particle excitations

Practical Implementation

• Neutron time of flight technique and pulsed sources

• Inelastic neutron scattering techniques and range of application

Example Application

• SDW in frustrated magnet Cs2CoBr4

14. 02. '24 Lecture 8: Inelastic Neutron Scattering to Investigate Dynamics
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• “Introduction to the Theory of Thermal Neutron Scattering”
G. L. Squires
Dover Publication (1978)

• “Theory of Neutron Scattering from Condensed Matter” Vol.I/II.
S. W. Lovesey
Oxford Science Publications (1984).

• “Neutron Scattering with a Triple-Axis Spectrometer: Basic Techniques”
G. Shirane, S. M. Shapiro, J. M. Tranquada
Cambridge University Press

• “Inelastic Scattering” (more TOF-centric)
B. Fulz et al.
https://www.its.caltech.edu/~matsci/btfgrp/Inelastic_Neutron_Book.pdf 

• “Neutron & X-ray Spectroscopy”
F. Hippert, E. Geissler, J. L. Hodeau, E. Lelievre-Berna, J. R. Regnard
Grenoble Sciences, Springer

Further Reading
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https://www.its.caltech.edu/~matsci/btfgrp/Inelastic_Neutron_Book.pdf


Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Reminder: Why Neutrons?
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Double Differential Cross-Section
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Fermi’s Golden Rule (elastic             ):

Change in sample state I to F (inelastic) :

Using the Fermi pseudo-potential one can derive (see e.g. Squires):

With the probability for the system to be 
thermally excited to the initial state EI:
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Double Differential Cross-Section
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Fermi’s Golden Rule (elastic             ):

Change in sample state I to F (inelastic) :

Using the Fermi pseudo-potential and a few standard tricks one can derive (see e.g. Squires):

The measured double differential scattering cross-section is a Fourier transform in space and time!

It measures “where atoms are and how they move”.
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Correlation Functions
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𝑆 𝑄,𝜔  has an important property known as detailed balance

𝑆 −𝑄,−𝜔 = 𝑒
−
ℏ𝜔
𝑘𝐵𝑇𝑆 𝑄,𝜔

Detailed Balance
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Meaning:
• ω > 0: Creation of excitation in scattering system 

(down scattering of neutron) 
• ω < 0: Annihilation of excitation (up scattering of neutron)
• Weight for both cases depends on temperature!
• At T = 0 K no modes can be annihilated, 

because there are none!

Neutron Scattering System

ℏ𝜔

ℏ𝜔

ℏ𝜔

Can be derived directly from

and thermal state population:

ℏ𝜔
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Quasi-particle Excitations
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where χ’’ is imaginary part of dynamic susceptibility
(see fluctuation-dissipation theorem)
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Phonon Lifetime

14. 02. '24 Lecture 8: Inelastic Neutron Scattering to Investigate Dynamics

( ) 2 2 2

2 2

1 1
   with '

' '

qs
qs qs qs qs

qs qs
qs qs

    
   


 → = −

  +  

qs is the half-width at half-maximum (HWHM) and is related to the phonon lifetime via 
2 qs

 =


Phonons in conventional SC Nb3Sn: J. D. Axe and  G. Shirane,Phys. Rev. Lett. 30, 214 (1973);Phys. Rev. B 8, 1965 (1973).

remember Frouier transform
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Neutron time of flight technique
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neutron
source

sample
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Pulsed neutron sources
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Higher efficiency for ToF based instruments (usable / produced neutrons)

K.H. Andersen, et al., Nuc. Inst. Meth. A., 957 (2020), 163402

SINQ

Example: European Spallation Source (ESS)

• Beam power up to 5 MW  (5x SINQ)
• Usable cold neutrons 100x SINQ
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Pulsed neutron sources
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Higher efficiency for ToF based instruments (usable / produced neutrons)

K.H. Andersen, et al., Nuc. Inst. Meth. A., 957 (2020), 163402

SINQTBL

Example: European Spallation Source (ESS)

• Beam power up to 5 MW  (5x SINQ)
• Usable cold neutrons 100x SINQ
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ESS is huge
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target wheel (2m radius)

North instrument hall

neutron
“bunker”

long neutron guide hall (~150m)

LINAC
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Neutron spectrometers
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Time-of-Flight Spectrometer Triple-Axis Spectrometer

Spin-Echo Spectrometer Backscattering Spectrometer
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Neutron spectrometers (inelastic)
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Triple Axis Spectroscopy
• High resolution
• Low background
• Simpler analysis
• Single point measurement

Time of Flight Spectroscopy
• Large energy- and q-range
• Fast measurement
• Profit from modern, pulsed sources
• Flexible binning
• Complex data reduction
• Possible spurious signals (spurion)

Specialized Techniques
• Backscattering spectroscopy

• High absolute energy resolution
• Spin-echo

• High energy transfer resolution
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Neutron spectrometers (inelastic)
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Triple Axis Spectroscopy
• High resolution
• Low background
• Simpler analysis
• Single point measurement

Time of Flight Spectroscopy
• Large energy- and q-range
• Fast measurement
• Profit from modern, pulsed sources
• Flexible binning
• Complex data reduction
• Possible spurious signals (spurion)
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Time of Flight spectroscopy
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Detector Shielding

Cryostat

Sample

Detector
Tubes

Detector
bank

Neutron
Beam

Chopper

Neutron Source

Q(t)

ki(t)

kf(t)

φ

Momentum transfer: 𝑸(𝒕) = 𝒌𝑖 − 𝒌𝑓(𝑡)

Energy transfer:  ℏ𝜔(𝑡) =
ℏ2

2𝑚
𝒌𝑖 − 𝒌𝑓(𝑡)

2
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ToF spectrometers at different facilities
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Time-Of-Flight Spectroscopy: Kinematic Conditions
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Cosine rule provides measurement range:
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Time-Of-Flight Spectroscopy: Quick Data Collection
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P. Das et al., Phys. Rev. Lett. 113, 246403 (2014); D. M. Fobes et al., Nature Physics 14, 456–460 (2018)

CeRhIn5



Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Spurious Scattering : Sample Environment in TOF
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Ei = 500 meV   vi = 9.781 m/s

Typical TOF for Ei=Ef: t = 4 m / 9.781 m/s = 409 μs

Double scattering at container (elastic, incoherent/powder) 
 →additional flight path ~ 10 mm

Additional flight time: 
 Δt = 0.1 m / 9.781 m/s = 10.2 μsec

Corresponds to virtually slow neutron with speed 
 vf = 4 m / (t + Δt ) = 9.542 m/s  Ef= 476 meV

Detector
4 m away from sample

Heat Shield
~Ø 0.1 m

Sample

Easy to produce “virtual” energy transfers between 0-50 meV even for elastic scattering!!!! 
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Improve background with Radial Collimator
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Divergent Neutron Beam

Sample

Pressure Cell

Detector Bank

Divergent Neutron Beam

Sample

Pressure Cell

Detector Bank

Radial
Collimator
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Triple Axis Spectroscopy
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Note:
Clifford Shull & Bertram Brockhouse received
1994 Nobel Prize in Physics for invention of this technique!
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Intermezzo – Bragg-edge imaging and filters
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Bragg:

There is a cut-off for wavelengths larger than 2d!

If we use a crystal, why is filter needed?



Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Intermezzo – Bragg-edge imaging and filters
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Triple Axis Spectroscopy - Modes of Operation
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Constant-Energy Scan
(ω = constant)

Constant-Momentum Scan
(q = constant)
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Triple Axis Spectroscopy – Rowland Focusing
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➔ Focusing increases the flux on the sample.

➔ What happens to the resolution?
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Triple Axis Spectroscopy – Rowland Focusing
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➔ Momentum resolution decreases (high flux).

➔ However, energy resolution increases!!!
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Recap: Advantages/Disadvantages ToF/3A
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Time-of-Flight Spectrometer
• Rapid data collection.
• Energy resolution mostly controlled via 

choice of incident energy (simple)
• Energy resolution mostly controlled via 

incident energy (limited options).
• Spurious Scattering is harder eliminate 

(multiple scattering,…).
• Sample environment such as magnets or pressure cells 

are difficult to use (background).

Triple-Axis Spectrometer
• Very versatile
• Clever choice of configurations can increase resolution 

while maintaining intensity.
• Background is more controlled.
• Can be used with large variety of sample environment.
• Slow data collection (single spot in Q-ω).
• Resolution function is complex (but can be calculated)



Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic

Extending TAS – CAMEA@SINQ

14. 02. '24 Lecture 8: Inelastic Neutron Scattering to Investigate Dynamics

C. Niedermayer

P. Keller
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SDW in frustrated magnet Cs2CoBr4
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System: Cs2CoBr4 
L. Facheris, et al., Phys. Rev. Lett. 129, 087201 (2022)
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