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In the diffusive transport of waves in three dimensional media there should

be a phase transition with increasing disorder to a state where no transport oc-

curs. This transition was first discussed by Anderson in 1958 (1) in the context

of the metal insulator transition, but as was realized later it is generic for all

waves (2; 3). However, the quest for the experimental demonstration of ”An-

derson” or ”strong” localization of waves in 3D has been a challenging task. For

electrons (4) and cold atoms (5), the challenge lies in the possibility of bound

states in a disordered potential well. Therefore, electromagnetic and acoustic

waves have been the prime candidates for the observation of Anderson local-

ization (6–16). The main challenge using light lies in the distinction between

effects of absorption and localization (10; 11). Here we present measurements

of the time-dependence of the transverse width of the intensity distribution

of the transmitted waves, which provides a direct measure of the localization

length and is independent of absorption. From this we find direct evidence for

a localization transition in three dimensions and determine the corresponding

localization lengths.

In the diffusive regime (kl∗ � 1) the mean square width σ2 of the transmitted pulse,

i.e. the spread of the photon cloud, is described by a linear increase in time σ2 = 4Dt (17).

Here, D is the diffusion coefficient for light, k the wave-vector and l∗ the transport mean

free path. When considering interference effects of the diffusive light, Anderson et. al (18)

predicted a transition to localization in three dimensional systems at high enough turbidity

(kl∗)−1. The criterion for where this transition should occur is known as the Ioffe-Regel

criterion, namely kl∗ . 1 (19). At such high turbidities light will be localized to regions of

a certain length scale, namely the localization length ξ, which diverges at the transition to

localization. This implies that σ2 initially increases linearly with time, but saturates at a

later time tloc (localization time) towards a constant value given by σ2 = ξ2, where ξ is the

localization length.

In this work we present measurements of light transport in 3D open, highly scattering

TiO2 powders. Given the high turbidity of the samples studied and the large slab thickness

(L varying from 0.6 mm to 1.5 mm) the transmitted light undergoes typically a few million

scattering events in any of the three spatial directions before leaving the sample. Thus our

samples present a true bulk 3D medium for light transport.
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The great advantage of determining the time dependence of the width of the transmission

profile lies in the fact that since the width is obtained at a specified time, absorption effects

are present on all paths equally. This means that the width of the profile at a given time is in-

dependent of absorption. This can be seen from the general definition of the width in terms of

the spatial dependence of the photon density T (ρ, t), where ρ is a vector in the 2D transmis-

sion plane with the origin at the center of the beam: σ2(t) =
∫
ρ2T (ρ, t)d2ρ/

∫
T (ρ, t)d2ρ.

In this definition, an exponential decrease due to absorption enters T (ρ, t) both in the nom-

inator and in the denominator and thus cancels out. In the diffusive regime, the profile will

be given by a Gaussian: T (ρ) ∝ exp(− ρ2

8Dt
), i.e. with a width σ2 = 4Dt. Hence we fit a 2D

Gaussian to the intensity profile at a given time (see Fig. 1, which shows the gated intensity

profile at three different time points demonstrating the increase in width with time). This

fit yields the width of the Gaussian in both the x- and y-direction. In localizing samples,

the intensity distribution is expected to be exponential, with a characteristic length scale

ξ. This can be seen in our samples, however at small distances ρ the profile can be well

approximated by a Gaussian (see supplementary material). Hence, we fit a Gaussian to all

our samples, which gives qualitatively similar fits as an exponential function in the localized

case (see supplementary material).

The fitted widths are then plotted as a function of time to yield the results shown in Fig.

2 (a-c). In the case of a diffusive sample, Aldrich anatase, with kl∗AA = 6.4, the square of

the width increases linearly over the whole timespan (see Fig. 2 a) as expected. The small

deviation from linearity around the diffusion time τmax is a result of the gating of the high rate

intensifier (HRI) (see supplementary material). The slope of the increase is in good accord

with the diffusion coefficient determined from time dependent transmission experiments (13),

see table 1 in the supplementary material. Note also that the time dependent width can

exceed the thickness of the sample, which is a consequence of the fact that we are studying

the transmission profile at specific times.

The width σ2 of the transmitted pulse gives a direct measure of the localization length ξ

in the localizing regime. This is because the 2D transmission profile of the photon cloud is

confined to within a localization length. When considering an effective diffusion coefficient

corresponding to the slope of the temporal increase in width, one thus obtains an effective

decrease of the diffusion coefficient with time as D(t) ∝ 1/t after a time scale corresponding

to the localization length (20). In this picture, for large L, one expects a time dependence
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of σ2, which is linear up to the localization length and then remains constant as time goes

on. Numerical calculations of self-consistent theory (21; 22) give a different increase at short

times as σ2 ∝ t1/2 and a plateau value of σ2 = 2Lξ for L � ξ. These predictions can be

directly tested from data of samples with high turbidity, which show non-classical diffusion

in time dependent transmission measurements. This is shown in Fig. 2 b) and c). Taking a

closer look at the short time behavior one can see that σ2 increases linearly in time contrary

to the self-consistent theory calculation. This is similar to the behavior found in acoustic

waves (16). However in contrast to the diffusive sample, a plateau of the width can be

clearly seen. This is in good accord with the theoretical prediction (22) and a direct sign of

Anderson localization. This plateau can also be seen directly from the transmission profiles

shown in Fig. 1, where the normalized intensity profile is shown for three different time

points. At late times, the width does no longer increase indicating a localization of light.

The data shown in Fig. 2 also show results for samples of different thickness. These

samples of different thickness are made from the same particles but may vary slightly in

terms of filling fraction. However as checked by coherent backscattering, samples made up

from the same particles have very comparable turbidity (see supplementary material). If

the thickness L of the sample becomes comparable to the localization length, a decrease of

the width of the photon distribution with time can be observed. This surprising fact can

be understood in a statistical picture of localization, where a range of localization lengths

exists in the sample corresponding to different sizes of closed loops of photon transport. In

finite slabs, larger localized loops may be cut off by the surfaces more likely than small loops

leading to a lower population of such localized states at longer times. Thus on average,

the observed width will correspond to increasingly shorter localization lengths and thus a

decrease of σ2 with time may occur. This is schematically illustrated in Fig. 2 d). Note that

such a peak in the width of the intensity distribution has also been seen in calculations of

self-consistent theory, albeit in thicker samples (22), such that no direct comparison with

our data is possible. When the thickness decreases even more, such that it is shorter than

the localization length, the plateau in the width is lost altogether and σ2 increases over

the whole time window. In fact, the behavior rather corresponds to that predicted for the

mobility edge (20), where a sub-linear increase of σ2 ∝ t2/3 is predicted. At the transition

one observes a kink in σ2 and the ratio of the initial slope to that at the kink corresponds to

the sub-diffusive exponent a. In fact, this thickness dependence can be used as an alternative
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determination of the localization length.

The evaluation of the plateaus of the localizing samples for different thicknesses yields

a localization length independent of L. In case the time dependence showed a maximum

rather than a plateau, the maximum value was used. Thus we identify σ2
∞ = ξ2 and obtain

ξR104 = 717(6)µm for R104, ξR902 = 717(9)µm for R902 and ξR700 = 670(9)µm for R700.

These are mean values for all thicknesses investigated.

As expected, sample R700 has the smallest localization length ξ, as has already been

concluded from time of flight experiments (13), and corresponds to the lowest value of

kl∗R700 = 2.7. In terms of localization, R104 and R902 are very comparable, which again

is in good accord with the fact that their turbidities are very similar, kl∗R104 = 3.7 and

kl∗R902 = 3.4 respectively, even though their other sample properties are rather different.

As stated above, this determination of ξ is in good accord with that from the thickness

dependence of the occurrence of a plateau. As seen in Fig. 2, R104 with a thickness of

L = 0.71mm behaves sub-diffusively, but the sample with L = 0.75mm shows a plateau,

indicating a localization length of ξ = 0.73(2)mm. The same transitional behavior can be

seen for R902 between 0.7mm < L < 0.8mm as well.

So far, we have shown that for different samples showing a range of kl∗ close to unity a

qualitative change in the transport properties occurs which is consistent with the transition

to Anderson localization. In order to show that these are not sample intrinsic properties,

we now study one and the same sample at different incoming wavelengths. The turbidity

depends quite strongly on the wavelength λ of light, which we tuned from 550 nm to 650 nm.

For these wavelengths, we have determined that the turbidity changes from kl∗550nm ≈ 2.1 up

to kl∗650nm ≈ 3.45, thus spanning a range similar to that of the different samples above. At the

highest and lowest wavelengths, the values of kl∗ were interpolated from the experimentally

accessible values, which is a good approximation, since for the investigated region kl∗ are

found to scale linearly with λ (see supplementary material). The result of such a spectral

measurement of a R700 sample (L = 0.98 mm and m = 377 mg) is shown in Fig. 3. For

the wavelengths of 640 nm and 650 nm, corresponding to the largest values of kl∗, σ2 does

not saturate while it does for smaller kl∗, which pin points the mobility edge. This allows a

direct characterization of the localization transition with a continuous change of the control

parameter kl∗.

We have determined the same spectral information also from a R104 sample, which is
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closer to the mobility edge at a wavelength of 590 nm and for a rutile sample from Aldrich,

which shows classical diffusion at 590 nm. For all of these samples, we have determined

the value of kl∗ (23). With the value of ξ, and the scattering strength kl∗ we are able to

determine the approach to the mobility edge at kl∗crit, as shown in Fig. 4. At the mobility

edge, we can determine the qualitative change in behavior from the ratio of the slopes of

σ2 as a function of time in the localized or sub-linear regime and the initial diffusive regime

(see supplementary material). This gives a direct estimate of the exponent a with which

the width increases with time, σ2 ∝ ta shown in Fig. 5. There is a clear transition in the

behavior with kl∗, showing a critical value of kl∗crit = 4.5(4), above which a = 1 and below

which a = 0. This is in good accord with the determination from time of flight measurements

on similar samples yielding kl∗crit,ToF = 4.2(2) (14). Note that with an effective refractive

index of the samples of neff ' 1.75, a critical value of kl∗crit = 4.2 corresponds to an onset

of localization at the point of l∗/λeff ≈ 1, which is a reasonable expectation for the onset of

localization.

The dependence of the inverse width on the turbidity, as shown in Fig. 4, also indicates

the critical behavior around the transition. Below the critical turbidity, σ2 increases at

all times and the corresponding inverse localization length is zero. At the mobility edge,

the localization length is limited by the sample thickness, which in the case shown here

was approximately 1 mm and a more detailed determination of the intrinsic localization

length is not possible. For highly turbid samples, well below the transition, the inverse

localization length seems to increase linearly with decreasing kl∗ indicating an exponent

of unity. However, there is insufficient dynamic range close to the transition for a full

determination of a critical exponent.

In conclusion, we have shown direct evidence for localization of light in three dimensions

and the corresponding transition at the mobility edge. This has been achieved using the time

dependence of the mean square width σ2 of the transmission profile, which is an excellent

measure for the onset of localization of light. In contrast to other measures, it is completely

independent of absorption and allows a direct determination of the localization length for

samples close to the mobility edge. We find that for highly turbid samples, σ2 shows a

plateau, which changes to a sub-linear increase for critical turbidities and becomes linear

for purely diffusive samples. This allows a detailed characterization of the behavior of

transport close to the transition, which is not possible with other techniques. By evaluating
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the plateau σ2
∞ of localizing samples one can directly access the localization length ξ. For

sample thicknesses close to the localization length, we moreover observe a decrease in the

width of the photon cloud, which we associate with a statistical distribution of microscopic

localization lengths. These data may stimulate further theoretical work and comparison

between such quantitative theories, such as self-consistent theory (22) or direct numerical

simulation (24) and the data may yield valuable information about the statistical distribution

of localization lengths close to the transition.

In addition, we have shown that the transition to localization can be observed in one

and the same sample using spectral measurements, thus continuously varying the control

parameter of turbidity through the transition. For highly turbid samples, the width of the

transmission profile saturates at a value, which increases with decreasing turbidity until the

localization length is comparable to the sample thickness. At this point the width increases

at all times, albeit with a sub-linear increase at long times. This behavior is expected from

the diffusion coefficient at the mobility edge (20). Such measurements close to the transition

between Anderson localization and diffusion allow a determination of the critical turbidity

kl∗crit = 4.5(4), which is in good agreement with an indirect determination using time of

flight measurements. In addition, our determination of the localization length during the

approach to the localization transition allows an estimate of the critical exponent of the

transition. Well away from the critical regime, we find a value close to unity, which is not

incompatible with theoretical determinations (3; 18; 25). A complete description of the

transition in open media taking finite size effects into account will be a great challenge for

future theoretical descriptions of Anderson localization.

Methods

The samples are slabs made up of nano particles of sizes ranging from 170 to 540 nm

in diameter with polydispersities ranging between 25 and 45 %. Powders were provided

by DuPont and Sigma Aldrich. These samples are slightly compressed and have been used

previously (13) to demonstrate non-classical transport behaviour in time dependent trans-

mission. TiO2 has a relatively high refractive index in the visible of n = 2.7 in the rutile

phase and 2.5 in the anatase phase.

The extremely high turbidity of the samples implies the use of a high power laser system

to be able to measure this transmitted light. We use a frequency doubled Nd:YAG laser

(Verdi V18), operated at 18 W output power, to pump a titanium sapphire laser (HP Mira).
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The HP Mira runs mode locked with a repetition rate of 75 MHz at a maximum of about

4 W. To convert the laser light from about 790 nm to orange laser light (590 nm) a frequency

doubled OPO is used. The laser wavelength emitted by the OPO can be tuned from approx.

550 nm to 650 nm.

To approximate a point-like source the laser beam was focused onto the flat front surface

of the sample with a waist of 100 µm. The transmitted light was imaged from the flat

backside by a magnifying lens (f =25 mm, mounted in reverse position) onto a high rate

intensifier (HRI, LaVision PicoStar). The HRI can be gated on a time scale of about 1 ns

and the gate can be shifted in time steps of 0.25 ns. The HRI is made of gallium arsenide

phosphide which has a high quantum efficiency of maximum 40.6 % at about 590 nm. A

fluorescent screen images the signal onto a 16 bit CCD Camera with a resolution of 512 ×

512 pixel. With this system we were able to record the transmitted profile with a time

resolution below a nanosecond.

To measure the turbidity of a sample we used a backscattering set-up described elsewhere

(12; 23). With this setup covering the full angular range, it is possible to determine kl∗ from

the inverse width of the backscattering cone. Since this system used different laser sources,

the spectral range of the set-up is more limited in wavelength (568 nm to 619 nm and 660 nm).
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FIG. 1: This figure shows a section of the raw data (with the fit displayed via contours) of a R104

sample that features a plateau. From left to right the timestamps are 4 ns, 6 ns and 8 ns after

the initial laser-pulse. From 4 ns to 6 ns one can see a broadening in the profile width, whereas

from 6 ns to 8 ns no further increase can be seen. This constant profile width is the signature of

Anderson localization.
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a)

FIG. 2: The time dependence of the mean square width scaled with the sample size σ2

L2 is shown for

different samples. The legends show the slab thickness L in mm. The time axis is scaled with the

diffusion time τmax (see supplementary material). In a) Aldrich anatase is shown, which behaves

diffusively. Samples showing localizing effects are b) R104 and c) R700. d) Schematic illustration

of the expectation for the time dependence of the width in the presence of statistically distributed

localization lengths as discussed in the text. The decreasing population at late times of the modes

for larger localization lengths (different colored lines belong to microscopic localization lengths

increasing from small (green) to large (red)) leads to an overall decrease of the width, in particular

for sample thicknesses close to the average localization length, because big loops are leaking out of

the sample more than small loops.
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FIG. 3: The spectral measurement of σ2 from a R700 sample ranging from 550 nm – 650 nm,

corresponding to kl∗ values between 2.1 and 3.6, is shown. With decreasing wavelength λ the

turbidity kl∗ increases, as well as localizing effects are getting stronger. This can be seen via the

lower mean square width σ2
∞ of the plateaus. For the wavelengths above 640 nm one may observe

a transition from localization to a sub-diffusive behavior. The legend shows the wavelength of light

in nm.
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FIG. 4: The inverse of the mean square width σ2
∞ of the plateau against kl∗ for different samples.

As can be seen, the width (corresponding to the localization length) diverges at a value of kl∗ ' 4.5,

indicating the transition from a localized to a non-localized state. The increase of the localization

length approaching the critical turbidity can also be used to estimate the critical exponent.
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FIG. 5: The value of the exponent a describing the temporal increase of the mean square width

(see text). In the diffusive regime, the exponent should be unity, whereas in the fully localized

regime a value of zero is expected. At the mobility edge the sub-diffusive increase corresponds to

intermediate values. This allows a determination of the critical turbidity.
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