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Abstract

Recently, Peters et al. (Phys. Rev. Lett. 88 (2002) 018701)) have found power-law behaviour
in the distribution of rain events. Here it is shown that the observed self-similar features in both
the reservoir level and the distribution of rain events, can quantitatively be reproduced from an
extension to two dimensions of the Oslo-model developed to describe the dynamics of a pile of
rice. Furthermore, it is argued that the sandpile model may be able to reproduce more detailed
features such as the shape of cumulus clouds. In addition, many other systems, which show
self-similarity in their time variations with the same quantitative characterizations, are discussed.
(© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The occurrence of power laws in nature is usually limited to a small number of
decades, which in the past has lead to some discussion whether they present a use-
ful concept at all to describe nature [1]. Recently, Peters et al. [2] have presented
power-law behaviour in the distribution of rainfall over at least four decades. In
their analysis of reservoir levels, they similarly found power-law behaviour over four
decades. Thus, together with the classical analysis of the water level of the Nile [3], a
water reservoir experimentally shows the same exponent over seven to eight decades
(on time scales from minutes to millennia). Thus, power-law behaviour in nature can
indeed be observed on many scales experimentally.

In their article, Peters et al. [2] speculate that such power-law behaviour indicates
that rainfall arises due to the self-organized criticality (SOC) [4] of the system of
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the atmosphere. This statement however, is not supported with results from models
known to exhibit SOC. Many times in models and experiments of SOC, exponents
characterizing the avalanche size-distribution function are the only quantities studied.
If one wants to make claims about rainfall distribution, of course this is not sufficient,
since arguably the system is much more complicated and cannot be reduced to a
single number. However, as will be shown below, there are other parameters in the
discussion on rainfall that can be modelled using simple cellular automata, putting
stronger constraints on a possible candidate model. Among these are the water reservoir
level, as discussed in Ref. [2] or the shape of clouds as discussed below. Here it is
argued that a very simple sandpile model [5], when re-interpreted for the situation of
the rainfall, quantitatively reproduces both the Hurst-exponent of the reservoir level,
and the probability distribution exponent for rain events. Furthermore, there is evidence
that the structure of some clouds may also be reproduced from the active clusters of
such a model.

In the following, the main lines of the analysis of the rain experiment by Peters et al.
[2] are recapitulated, in order to introduce the relevant parameters. Then the Oslo-model
is briefly described, both in its original context, as well as in the interpretation used
later on in the discussion of the rainfall data. In this context, I extend the model to
two dimensions. The results of the 2d-model will in the end be used in the comparison
with the experimental results. Finally, the results of simulations of this 2d Oslo-model
are analysed in terms of a reservoir level, similarly to what was done for the rainfall
data [2], as well as in terms of the avalanche size distribution. The results are then also
put into a wider perspective comparing them to experiments in other systems showing
similar behaviour.

2. Analysis of water levels and rain events

Rainfall has been studied for centuries' and power-law behaviour was also searched
for in the past [6]. However, up to the analysis of Peters et al. [2], results were
inconclusive and power-law behaviour was only found in a limited number of cases
and over very few decades.

By defining the concept of a ‘rain event’, which is the amount of rain that falls in
a period where the rain rate is non-zero, they have now found power-law behaviour
in the size distribution of rain events over four decades [2]. It should be noted here
that the concept of a rain event is closely related to that of an avalanche in sandpile
models and in SOC in general.

In addition, the classical analysis of Hurst on the water levels of the Nile [3] has
been applied to the rainfall data obtained using Doppler Radar measurements over the
Baltic Sea [7]. For this, a virtual water reservoir, X(7,7), is defined, given the rain rate

I The first fecords of measured rainfall date from 1441, when king Sejong of Korea invented the first
rain gauge and started collecting and recording scientific rainfall measurements; Information from the Korea
Meteorological Administration (KMA).
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Fig. 1. The ‘virtual reservoir level’ X(¢,7) (see Eq. (1)), as determined from simulations of the 2d Oslo-model

over 15,000 time steps. As will be seen in further analysis below, a self-similar structure is formed. The
range R(7), is also indicated in the figure.

q(t) at time ¢,
t
X(t1)=>_ lq() — (g)-]At, (1)
u=1
where At is the time step of the measurements and
1 T
(g)e=—D At (2)
=1

denotes the average influx over the period of the experiment, 7.
Given such a water reservoir level, Hurst [3] compared the range of X (¢,7) (see also
Fig. 1), defined by

R(t)= max X(¢,7) — min X(¢,71) 3)
1<i<t 1<i<t
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with the standard deviation of the influx to X(¢,7), which is given by the rain rate g(¢)

. 1/2
S(r) = (Ti] > gt - <q>z]2> . (4)
t=1

The dimensionless ratio of R(t)/S(tr) was found by Hurst [3] to scale as a power law
for the water levels of the Nile, R/S(t) ~ 1/, where he found H =~ 0.77 for the value
of the exponent. For uncorrelated random events, the exponent can be shown to be
H :% [3] and subsequently this R/S method was introduced by Mandelbrot and Wallis
as a general tool to characterize self-similar time series [8], using the anomalous Hurst
exponent.

3. The model

The sandpile model used in the simulations is generally known as the Oslo-model [5]
and belongs to the class of sandpile models with randomized updating rules, where the
critical slope is dynamically adjusted by the avalanches [9]. In the original 1d version
of the model, grains of sand are introduced at one end of a box. When the local slope
of the pile, given by the height difference between the site and its adjacent neighbour,
exceeds a similarly local threshold, the grains redistribute by letting one grain topple to
the next site (from site 7 to site i + 1). This is done by reducing the height at position
i by one and increasing the height at position i + 1 by one. Furthermore, at such a
toppling event the local threshold is chosen anew. This procedure is iterated until all
sites have reached a stable state, at which point a new grain is introduced on the
left. Due to the randomization of the updating rule, the average critical slope actually
self-organizes to a value intrinsic in the model. The model can easily be re-formulated
in terms of the local slopes z; = h; — h;1;. In that case, the rules are as follows: when
z; > z. [5]

zi—2z;— 2,
Zig1 — Ziz1 + 1,
z.€{1,2} . (5)

In this formulation, the original sandpile nature of the model is no longer immediately
obvious. However, an extension to higher dimensions becomes straightforward. Such
higher dimensional versions of the model may also be useful for work on sandpiles,
where the z’s then stand for the gradient of the pile, but in what follows, the additional
dimension will take into account properties of the atmosphere. The simplest possible

extension of the toppling rules (Eq. (5)) to two dimensions encompasses the following
updating rules:

zij = zij— 4,
Zit1,; — Zit1,; + 1,
Zij+1 — Zijx1 + 1,

z.€{3,4} . (6)
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The updating for this two-dimensional version takes place on a line at x = 0, whose
values are increased by one after each avalanche (i.e., zo; — zp ;+1). In the y-direction,
periodic boundary conditions are assumed. The boundaries in the x-direction are open.
This constitutes what will be referred to as the 2d Oslo-model in the following.

In the context of rainfall, this formulation of the model is more intuitive. Here,
one may interpret the z;; as the coarse-grained levels of water vapour (humidity) in
the atmosphere, which is continuously increased at the surface of the earth due to
the evaporation from the oceans (i.e., the edge of the pile—or the line at x =0) and
which condenses after reaching the (locally defined) dew-point, thereby influencing the
humidity in the immediate surroundings. Due to the coarse-grained nature of the model,
the scale on which humidity of the air packets in question increases or decreases can be
macroscopic. Therefore, for instance turbulent eddies in the atmosphere may lead to an
effective increase of humidity in the air packet neighbouring the condensation, on the
scale of the model. The details of the microscopic process are however not important.
In addition, after such a condensation event, the local dew-point is changed as well, due
to the change in temperature that follows the condensation. Furthermore, the second
dimension of the model should take lateral diffusion in the atmosphere into account as
well. Thus, when thinking of modelling rain distributions, the x-axis would correspond
to the height of the atmosphere, whereas the y-axis is the lateral direction. The main
point of this paper is that with such an interpretation of the relevant parameters, the 2d
Oslo-model can be treated as an effective, minimal model for rain events, where each
toppling event corresponds to the condensation of water out of the atmosphere. The
‘rain rate’ at a given moment is then given by the number of topplings (condensation
events) in one iteration and a rain event corresponds to an avalanche.

An example of the reservoir level obtained from the rain rate produced in the model
can be seen in Fig. 1. It should be noted at this point that the way time is defined
in these simulations differs substantially from the way it is usually done in sandpile
models, but is very much in line with the different versions of time in the analysis of
rain events [2]. In order to obtain the reservoir level shown in Fig. 1, every iteration
of the model was taken as a time step, instead of the duration of an avalanche.

4. Results and discussion

The results of an R/S analysis averaged over 50 different runs of the 2d Oslo-model
are shown in Fig. 2. In the simulations, an area of 100 x 100 pixels was used. Other
area sizes have been simulated as well, with consistent results. As can be seen from
Fig. 2, power-law scaling is obtained for almost four decades, with a Hurst exponent of
HO°=0.80(5). This has to be compared to Fig. 4 of Ref. [2], where similar behaviour
is found from actual rain data. In that experiment, the Hurst exponent turns out to be
H™" = 0.76 [2], which is in good agreement with the behaviour of Fig. 2. Similarly,
the classic work of Hurst on the water level fluctuations of the Nile on completely
different time scales is in very good agreement showing an AN = (.77 [3].

However, quantitative agreement of the 2d Oslo-model with the rain data from the
Baltic Sea [2,8] is obtained not only in the R/S analysis. In the more classical measure
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Fig. 2. Ratio R/S for simulations of the 2d Oslo-model. In the simulations an area of 100 x 100 pixels
was run 50 consecutive times over 100,000 time steps, with about 500 avalanches passing in each run. The
Hurst exponent derived from this figure is HO%° = 0.80(5), consistent with that determined for
rainfall [2].

for SOC [4], the size distribution of avalanches, the 2d Oslo-model also gives good
agreement with the experimental data on rain distribution. As can be seen from Fig. 3,
the avalanche size distribution is a power law, with an exponent of 4% = —1.40(5).
In this figure, the size distribution of the avalanches is plotted after 5000 avalanches
have passed on an area of 100 x 100 pixels, just as was the case for the results in
Fig. 2. This result has to be compared with Fig. 1 in Ref. [2], where the rain event
size distribution is shown. Again there is power-law behaviour over many decades, with
an exponent of 4™" = —1.36 [2], which again is in good quantitative agreement with
the simulations of the Oslo-model shown above.

Another quantity determined for rainfall in Ref. [2], is the size distribution of drought
durations. Due to the discreet nature of the cellular automaton used here (after at
least three updates, the threshold z. is exceeded and a toppling occurs—hence drought
periods cannot last longer than three time steps), the model is not able to reproduce
such a result. Nevertheless, extensions of the model are possible, taking into account
the finite resolution of experiments and hence only registering rain rates (i.e., toppling
numbers) bigger than a certain size. Other options include changing the updating rules,
which encompasses letting a certain number of time steps pass between updates instead
of updating after a full avalanche has passed. Such models have been simulated and
can give behaviour which is consistent with the data in Ref. [2] for certain choices of
the additional parameters. Such additions to SOC models have been done previously
for an earthquake model, where power-law waiting statistics could be obtained [10].
However, in the spirit of models of SOC, I do not want to introduce further parameters,
the choice of which would have to be justified on more detailed, microscopic grounds.
From a similar position, Sanchez et al. [11] have recently argued that waiting time
statistics present a bad measure with which to test SOC models.
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Fig. 3. Avalanche size distribution for the 2d Oslo-model. An area of 100 x 100 pixels was simulated during
5000 avalanches, the size distribution of which is shown. It follows a power law, with an exponent of
A951° = 1.40(5), which is consistent with that of the size distribution of rain events [2].

In order to test the applicability of the Oslo-model to rainfall further, it may
be interesting to study the structure of clusters of activity. It is known that in the 2d
Bak-Tang—Wiesenfeld (BTW) model [4], those clusters form fractal structures. In
Fig. 4, some examples of activity clusters are shown for the 2d Oslo-model introdu-
ced here. From the figure it can be seen that just as in the BTW-model, the activity
clusters seem to have a fractal boundary. This is intriguing, since in the present in-
terpretation of the Oslo-model, these clusters of activity correspond to clusters where
water has condensed in the atmosphere, which are more generally known as clouds.
For cumulus clouds (i.e., rain clouds) it is also well known that their boundaries show
fractal shapes [12]. It would be interesting to study the scaling properties of the active
clusters in more detail and compare them to those observed experimentally in clouds,
where a wealth of information is available [13]. However, for such a comparison to be
done properly, the Oslo-model will probably have to be extended to three dimensions.
Nevertheless, this can in principle be achieved easily, in analogy to the 2d extension
proposed here, but will be computationally demanding for reasonable size grids.
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Fig. 4. Four different activity clusters in a 100 x 100 simulation of the 2d Oslo-model. As can be seen, these
clusters have fractal boundaries, similar to clouds, which is what these clusters correspond to in the present
interpretation of the model.

5. Conclusions

In conclusion, simulations of the 2d Oslo-model have been studied in terms of an R/S
analysis and a Hurst exponent of H°%°=0.80(5) has been found. In these simulations,
each iteration has been treated as an individual time step, which is in contrast to the
usual way of treating sandpile models. In the case of modelling rainfall, however,
physical time and the time of rain events are different, which justifies the different
treatment of time in the simulations.

Comparing the results of simulations with those of actual rainfall in the Baltic Sea,
one finds that the Hurst exponent is quantitatively reproduced. Peters et al. [2] find
a value of H™" = (.76, in agreement with H9%° = 0.80(5) for the simulations pre-
sented here. Furthermore, there was another recent R/S analysis of rainfall distribu-
tions in Queensland, Australia, which gives similar results [14]. Moreover in terms
of the ‘avalanche size distribution’, which in the case of rainfall corresponds to the
size distribution of rain events, agreement between the model and the experimental
situation is found. In the simulations the exponent of the power-law distribution of
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avalanches is 4981° = —1.40(5), whereas in the experiment a value of 4™" = —1.36 was
obtained [2].

This means that there is quantitative evidence from a model known to exhibit SOC
that the distribution of rain events may be reproduced from such a model, indicating that
the governing processes in the atmosphere may be in a SOC state. Further possibilities
for quantitative comparisons between such SOC models and meteorological data in
terms of cloud shapes are pointed out as well. Moreover, it should be noted that R/S
analyses have not been restricted to rainfall in the past but to many other systems
including charge transport in plasmas, where also a Hurst exponent of HP*Mm — (.77
was found experimentally [15]. In addition, the temporal variation of the rotation of the
Sun [16], as well as the variation of Sun-spots [17] show behaviour consistent with the
simulations giving 5" = 0.83. Finally, C-14 radiocarbon abundance variation in the
atmosphere over the last 3000 years give the same behaviour with H¢ !4 = 0.84 [18].
Even though all of these phenomena seem to be far removed from the distribution of
rainfall (and each other), charge transport in plasmas, as well as Sun-spot variations
are both concerned with turbulent transport, which is also the case for the rainfall
distribution. Furthermore, radiocarbon abundance may be directly related to Sun-spot
variation via solar activity and the corresponding cosmic radiation. This indicates that
simple sandpile models can actually give quantitative agreement with a great variety
of different systems.
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