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Abstract. The dynamics of a driven, three dimensional rice-pile is studied. When the pile is fully grown, its activity takes
place in power-law distributed avalanches. The observation of finite-sizescaling in the observed cut-off size indicates that
the pile is in a true critical state, as is demanded by self-organized criticality. Before the stationary state is reached, the
maximum slope of the pile is increasing towards a critical value, where the critical state is reached asymptotically. The
exponent governing this approach to the critical state is related to the exponents determined in the critical state for the
avalanche dimension and distribution. This is in good accord with an analytical theory of self-organized criticality. based
on extremal dynamics.

INTRODUCTION

The ubiquitous appearance of power-laws in nature has
lead Baket al. in 1987 to propose that slowly driven non-
equilibrium systems self-organize into a critical (SOC)
state, which naturally leads to power-law behavior [1].
While in the past 15 years, much progress has been made
in the theoretical foundations of a process that naturally
leads a system to its critical state [2, 3], controlled ex-
periments are a rarity in the field. There are less than a
handful of experiments actually demonstrating the exis-
tence of a true critical state in a slowly driven system,
showing finite size scaling of the cut-off size in addition
to a power-law distribution. Two such experiments were
carried out in two dimensional piles of granular material
(confined between two glass plates), with in one case rice
[4] and in the other case steel balls [5] as the granular ma-
terial. An extension to three dimensional piles has only
been published this year, where again two independent
experiments were carried out, one on a pile of rice [6]
and one on a pile of beads [7]. Here we describe the ex-
periment on the three dimensional pile of rice, however
going beyond the mere existence of a critical state.

From the theoretical investigations it has been shown
that in order to get a proper understanding of SOC, the
way to the critical state is of utmost importance, as this
allows the self-organization process to be studied [8].
Therefore, we here also study the behavior of the rice pile
in the transient regime in the approach to the critical state
and concentrate in particular on the maximum slope of
the pile, as the critical state is reached. Using the theory
that extremal dynamics is what underlies SOC, the ap-
proach to the critical state can be described analytically

by what is called the Gap-Equation [2]. This results in
the fact that the exponent governing the maximum slope
to its critical value,δ , is related to the exponents char-
acterizing the critical state, i.e. the avalanche distribution
exponent,τ, the avalanche dimension,D and the fractal
dimension of the active sites,dB. Combining the results
of the experiments on the critical state with those from
the transient behavior, can therefore lead to a confirma-
tion that extremal dynamics indeed lies at the heart of
SOC.

EXPERIMENTAL DETAILS

The experiments were carried out on a pile of rice with
the surface area of∼1 x 1m2 [6]. Long grained rice of di-
mensions∼2 x 2 x 7mm3 is fed continuously at one edge
of the pile in a uniformly distributed line and an image
of the pile surface is taken every 30s with a high resolu-
tion charge-coupled device (CCD) camera (1596x2048
pixels). The driving rate corresponds to the dropping of
∼1500 grains between two images. This does however
qualify as slow driving, as at each point along the line
of growth, this only corresponds to about 2 grains be-
ing added each time step. Furthermore, one has to com-
pare the number of added grains with that already in the
pile, which is of the order of 107−108 grains. In order
to reconstruct the surface coordinates of the pile, a set of
colored lines (red-green-blue) is projected onto the pile
perpendicularly. The images are taken at an angle of 45◦

to the projection direction leading to a distortion of the
lines corresponding to the surface properties, with and
accuracy and precision of∼ 1-2 mm [9]. After identi-



fication of the different lines from the image, a simple
calculation leads to the surface coordinates as shown in
Fig. 1.

FIGURE 1. A typical image of the reconstruction of the rice-
pile surface. Due to the number of lines projected, and the high
resolution of the CCD camera, the surface can be reconstructed
with an accuracy of∼ 1−2mm, which is comparable to the size
of a grain.

In the first part we will discuss experiments in a sta-
tistically stationary state. In this case, the pile was fully
grown when the experiment was started and the aver-
age removal of material at the bottom of the pile cor-
responded to the average material added. Here, each ex-
periment consisted of about 400 images and four sepa-
rate experiments were analyzed. The volume of rice dis-
placed by an avalanche,∆V , is then determined from the
height-difference between two consecutive time steps

∆V = 1/2
∫

|h(x,y, t)−h(x,y, t +∆t)|dxdy, (1)

whereh(x,y, t) is the height of the pile at positionx,y and
at timet. The height difference between two time steps
also presents a measure for the distribution of active sites,
which shows self-similar behavior. While these results
are used below, they are not shown here in detail, see
Ref. [6].

For the experiments on the build-up towards the crit-
ical state, we first created a flat pile surface, at an an-
gle far below the critical angle (φ0 ' 0.55 compared
to φc ' 0.8). Each experiment consisted of about 500
images and 9 separate experiments were analyzed [10].
Here, we want to determine a measure for the distance
from the critical state (the Gap of Ref. [2]). We therefore
determine the maximum local slope of the pile,f (t), as
a function of time (see inset of Fig. 5). As the pile gets
closer to the critical state, the maximum local angle will
approach a critical value,fc. The Gap is then given by the
differenceG(t) = fc − f (t) of the maximum local slope
to its critical value.

RESULTS IN THE STATIONARY STATE

Determining the size of an avalanche as described above,
the evolution of the rice pile in the stationary state is
intermittent, as can be seen in Fig. 2. There the avalanche

FIGURE 2. The temporal evolution of the avalanche sizes
∆V for one experiment. The activity is clearly intermittent,
which already indicates SOC behavior. A proper test however
consists of studying the size distribution as well as its finite size
scaling. This is done in Figs. 3 and 4.

size as a function of time is given for one experiment. A
histogram of this time evolution leads to the avalanche
size distribution, which is a central issue in SOC physics.
By studying subsets of the whole surface separately, it

FIGURE 3. The avalanche size distributions for different
size subsets of the pile on a double logarithmic plot. The size
distributions are obtained from a histogram of the temporal
evolution as shown in Fig. 2. As system sizes have a scaling
region, where power-law behavior is observed with an exponent
of τ ' 1.2 . The cut-off size, where the power-law breaks down,
increases with the linear size of the system. This indicates the
presence finite size scaling, which is shown explicitly in Fig. 4.

is also possible to check the data for finite size scaling,
which in a true critical state should be observed. The
histograms corresponding to different system sizes (with
a linear extent of 50, 150, 300, and 600mm respectively)



are shown in Fig. 3. As can be seen the avalanche size
distribution is a power-law in all data sets, where the
exponent can be estimated from a direct fit to beτ =
1.20(5). The different data sets do however show a cut-
off increasing with the system sizeL. This is a strong
indication of finite size scaling, which can be checked by
performing a curve collapse. On scaling the avalanche
size withL−D and the avalanche probability with∆V τ ,
we obtain a curve collapse for these data, as can be seen
Fig. 4. Here,D = 1.99(2) is the avalanche dimension and
τ = 1.21(2) is the avalanche size distribution exponent.
These values and their errors correspond to the best curve
collapse, as shown in Fig. 4. This indicates the presence
of finite size scaling and hence the fact that the rice pile
is indeed in a critical state. On the other hand, the fractal

FIGURE 4. The same data as in Fig. 3, where the avalanche
sizes are scaled with the system sizeL−D and the probabilities
are scaled with the avalanche size∆V τ . The data sets for the
different subsets collapse onto the same curve, which is a strong
indication of finite size scaling and hence the presence of a
critical state in the dynamics of the rice-pile.

dimension of the active sites was determined using a box
counting method to bedB = 1.58(3) [6] from the spatial
distribution of the height differences.

RESULTS IN THE TRANSIENT STATE

When the rice pile approaches the critical state, the max-
imum local slope increases towards its critical value.
In the context of extremal dynamics, this process can
be described by the Gap-equation, which predicts that
G(t) ∝ t−δ . Furthermore, the value of the exponent char-
acterizing the approach to the critical state,δ , is directly
related to the avalanche size distribution exponent,τ, the
avalanche dimensionD and the fractal dimension of the
active sitesdB in the stationary state via

δ = 1−
1−dB/D

2− τ
. (2)

The time dependence of the Gap is shown in Fig. 5,
where clearly the approach to the critical state follows
a power law over two decades. Experimentally,δ is
determined to be 0.8(1), where the biggest contribution
of the error comes from the determination offc, which
was obtained independently from a direct experiment on
the maximum possible slope of a small part of the pile to
be fc = 0.92(2). The value forδ obtained in the direct
experiment on the transient slopes is in good agreement
with the expectation from Eq. 2 ofδ = 0.75(3) using the
values ofτ,D anddB determined above.

FIGURE 5. The maximum local slope as the critical state
is approached is shown directly in the inset. The main figure
shows the difference of the maximum slope with its critical
value. This Gap asymptotically reaches zero as a power-law,
where scaling is observed over two decades. The exponent
is found to beδ = 0.8(1), which is in good agreement with
the expectation for an extremal system using the avalanche
distribution exponent in the critical state (see above).

CONCLUSIONS

We have shown that a three dimensional pile of rice in
the stationary state does show the characteristic prop-
erties of a critical state, namely power-law distributed
avalanches and more notably finite-size scaling. This im-
plies that indeed the system has been driven to a criti-
cal state. Experimentally however, there was no tuning
of parameters necessary to reach this critical state, which
implies that the rice-pile is in a SOC state. However,
in order to understand the nature of the critical state it-
self, we have further studied the approach of the rice-
pile to the critical state. Here, the maximum local slope
approaches its critical value according to a power law
with an exponent predicted from the theory of systems
with extremal dynamics. Thus interpreting the maximum



of the local slopes as the Gap leading to critical behav-
ior, it can be seen that the three dimensional rice-pile
studied here does self-organize into a critical state ac-
cording to the law of systems with extremal dynamics.
This shows that the critical state does not just fall out
of the air also in an experimental system, but can be
studied in great detail. Theories of extremal dynamics
are intimately connected to those of interface roughen-
ing in random media. Indeed there have recently been
several mappings [11, 12, 13] of SOC models on in-
terface models similar to the Kardar-Parisi-Zhang equa-
tion [14]. This connection between avalanche dynamics
and surface roughening can also be seen in our experi-
ments. Here the roughening exponents, which describe
the self-affine structure [15] of the rice-pile surface are
connected to the avalanche distribution exponents and
the avalanche dimension [6]. Furthermore, Paczuski has
pointed out that a formal indication for SOC can be ob-
tained directly from the critical state without studying
the transient behaviors using the multi-scaling properties
of the pile surface in time [8]. Due to the presence of
the transient timescale in the dynamics of the pile, there
should accordingly be no generic scaling in the tempo-
ral behavior. The experimentally determined dependence
of the dependence of the growth exponent on the multi-
scaling momentq is in fact in good agreement with the
theoretical prediction [16] as well. This indicates for in-
stance that indeed, Paczuski’s criterion can be used to
distinguish generic critical behavior from SOC, in sys-
tems where the transient stat is unavailable to the exper-
iment.
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