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Effects of lateral boundaries on traveling-wave dynamics in binary fluid convection
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The global dynamics of traveling-wave patterns in convection in a mixture of ethanol in water is studied in
different cell geometries: circular, rectangular, and stadium-shaped cells. The dynamics in these cells differ
greatly, changing from a globally rotating state in the circular cell, to one large domain of locally parallel
traveling waves in the rectangular cell, to a continually chaotic state in the stadium cell. In all three cases, the
patterns can be described in terms of the phase of the complex order parameter. Disorder in the patterns is
quantified in terms of topological defects in the phase field. While the numbers, net charge, and dynamics of
defects differ greatly in the patterns in the three cells, the local dynamics of the defects, as measured by the
defect-defect correlation functions, are similar.
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[. INTRODUCTION Stokes equation provides an exact description on which ap-
proximate models can be based. As a consequence, many
When a physical system is driven out of thermodynamicfundamental questions in pattern formation have been first
equilibrium, it generally undergoes symmetry breaking tran-addressed in the framework of convection and then subse-
sitions leading to the formation of a variety of pattefd$  quently applied to other situations, such as those of techno-
Depending on the detailed nature of the system, the patternggical relevance.
at onset may be stationary or show an intrinsic time depen- The influence of boundary conditions on patterns in con-
dence. In this paper we study the dynamics of patterns in th@ection has been studied extensively. Mostly these studies
special case of convection in a binary fluid mixture in whichhave concentrated on the investigation of convection in pure
the patterns at onset consist of traveling wa\@s It is im-  fluids, in which the patterns are stationary. When the initial
portant to emphasize, however, that such studies may als@stability is to a stationary pattern, the nature of the bound-
address problems in seemingly unrelated nonequilibriunary is very important. In the case of classical Rayleigh-
systems that exhibit oscillatory instabilities. Thus, the Stl.ldie%'enard convection, rolls of convection form the stable pat-
described here are potentially relevant in such diverse fieldgrn, whereas with different boundary conditions imposed on
as nonlinear optics in large aspect ratio lag8fspopulation  the top platele.g., corresponding to an open contajrtex-
dynamics in ecology4] and epidemiology5]; electric sig-  agonal patterns are observét4]. Similarly, the thermal
naling in the hearf6]; chemical waves in reaction-diffusion conductivity of the boundary can play an important role, as
systemg7,8]; the magnetic dynamo in the solar plasf®  has been discussed by Clever and B(i4&¢ who calculated
self-organization in colonies of amoebg0,11; and, in  the stability balloon for convection with one boundary nearly
some instances, the dynamics of driven magnetic flux vortithermally insulating. They predict that in such a case a pat-
ces in superconductofd2,13. Study of patterns and dy- tern intermediate between rolls and hexag6tmexarolls”)
namics in convecting fluids has a number of potential advanis stable. Typically, the presence of a lateral boundary in-
tages when the goal is to elucidate the fundamental physic@juces finite size effects, which result, for instance, in a small
principles underlying the patterns and dynamics in nonequichange in the critical Rayleigh numbid6]. However, in the
librium systems. Convection in pure fluids can be describe¢ase where there is an additional breaking of left-right sym-
by two dimensionless parameters, the Rayleigh and Pranghetry of the convection rollge.g., by imposing a global,
numbers, defined bj14] unidirectional flow in the convecting fluid lateral bound-
hSAT arie_s can also be instrumental in determining the pattern se-
Ra ¢ ’ (1)  lection[17].

VK In the case where the initial instability is oscillatory, and
the patterns at onset consist of traveling waves, theoretical
investigations of the effects of distant boundaries have
shown that their presence can substantially alter the nature of
the instability, even in one dimensi¢t8,19. For example,
wherea is the thermal expansion coefficient,is the kine-  changes in boundary conditions can change not only the
matic viscosity « is the thermal diffusivityh is the height of  critical value of the control parameter but also the frequency
the fluid layer,AT is the imposed temperature difference, of the traveling waves at onset. In the work presented here,
andg is the acceleration due to gravity. From an experimenwe report experimental studies of the dynamics of two-
tal viewpoint, excellent control of the system can bedimensional convection patterns in a binary fluid mixture of
achieved, providing a high degree of repeatability in experi-ethanol and water in cells of different shapes. For the regime
ments. On the theoretical side, models of fluid dynamics aref parameters studied, convection begins with a subcritical
developed to a high level of sophistication. The Navier-bifurcation to states of traveling waves. In the two-
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dimensional patterns studied here, not only does the presencarvature equal to that of the stadium-shaped cell, global
of the lateral boundaries alter the dynamics of the patternsotation of the pattern is observed to be stable, indicating the
significantly, but their shape does also. This is likely due toimportance of the symmetry of the boundary in determining
the fact that different regions of the boundary can have difthe dynamics.

ferent, competing effects at a single point within the cell. Previous experiments in a large circular cell led to the
The curvature of the lateral boundaries may also play aflevelopment of a description of the traveling-wave patterns
important role in the dynamics. The cell shapes studied her# terms of topological defects in the phase field of the order

correspond to different extremes. In the rectangular cell, th@arametef21,22. When describing a pattern-forming sys-

curvature of the boundary is zero almost everywhere apap?m that exhibits an oscillatory instability, it is customary to

from very small regions at the corners of the cell, where it isihtroduce a complex order paramef@;29)]. It is then pos-
very large. In the stadium-shaped cell, segments of zero cupible to demodulate the amplitude and the phase of this order

vature are separated by approximately equal lengths with Barametetsee Sec. Il below and Refg20,24). In the case

constant, nonzero curvature. Finally, in the circular cell the®! traveling-wave convection in the mixtures studied here,

curvature is constant and nonzero along the entire boundarg?e amplitude of convection is constant over most of the

As we describe below, this leads to vastly different globalPatern, and thus the details of the pattern are contained in
dynamics of the patterns in the three cases. the phase of the order parameter. Since the distribution of

Previous investigations of traveling-wave convection in aVave numbers and frequencies was found to be very uniform

circular cell have shown that the patterns evolve to a state iiy/ithin different traveling-wave domains, most of the infor-

which the entire pattern rotat€80—22. In the course of this maFion concerning the pattern is in the reg!ons near the ‘?'0'
self-organization, the pattern evolves to a small nungegy,, ~ M&in boundaries, which typically consist of lines of topologi-

four or five) domains of locally parallel traveling waves. &l defects in the phase fie[@1]. As a consequence, the

These domains share sources and sinks of the waves pairwi@eKing of different domains into states of global rotation in

along the boundary, such that the source of one acts as th&e circular cell is accompanied by a saturation of the net
sink of another, giving the impression of a global rotation oftOPological charge of the phase field at a value corresponding
the pattern. This symmetry between sources and sinks 4p the number of roll pairs along the boundary. The interac-

traveling waves along the boundary may reflect the symmet©ons between the defects, as evidenced by their mutual cor-
try of different points within the cell stemming from the relations, appears as if it could be a useful framework within
circular boundary. which to understand this self-organizatif2?]. In the case

We find that this situation is qualitatively different when ©f the rectangular and stadium-shaped cells investigated

the geometry of the cell boundary is changed. In a rectang1€ré; some of these features remain, while others clearly
lar cell, sources of traveling waves are almost always locate§USt P elaborated, as indicated by the different global dy-

at one of the comners of the cell. This is likely due to the fact?@MiCS that is observed. These issues will be discussed in

that the curvature of the boundary is very large at the cordetail below. o _
This paper is organized in the following way. In Sec. Il,

ners. At lower Rayleigh numbers, close to the saddle node,

the dominant source becomes unstable, which leads to tH&€ describe convection in a binary fluid mixture. We con-
creation of a dominant source in another corner. In the proxCentrate on the traveling-wave regime of relevance here in

imity of a corner, inhomogeneous flows or mixing may oc-Which the Soret effect plays a crucial role. In Sec. Iil, we
cur, which affect the effective local Rayleigh number. Closedescribe the experiment and data analysis procedures used.
to the saddle node such a change will lead to a significarff S€C- IV we present and discuss the experimental results,
alteration of the frequency of the traveling wayes]. This ~ @nd in Sec. V we offer a set of concluding remarks.

can in turn lead to the switching of domains observed. At

higher Rayleigh numbers, a source in a corner is stable and Il. BINARY FLUID CONVECTION

dominates the entire pattern. This leads to very well ordered
patterns consisting of a single domain with a relatively con+

stalnt anc: L(er_uformhwavs nulrlnt:ﬁr anctitfrquency._ a second diffusive quantity, the concentration, to the system
n a stadium-shaped cell, (€ patiern dynamics aré morfaqiqes temperature. Of particular relevance here is the cou-
chaotic. Globally rotating patterns can be produced in thesB”ng of these two quantities via the Soret effé@6,27,

cells; however, they are typlcally unstable. Moreover, theWhich is particularly strong in ethanol-water mixtures. For-
occurrence of a global rotation of the patterns depends on trV‘ﬁally this leads to an additional term in the concentration

way in which convection is initiated. In contrast to the Cir- ., .cant which depends on the temperature gradient:
cular cell, isolated sources do exist on the boundary of the ' '

stadium cell, similar to those in the rectangular cell. Due to jo=—D.Vc+D.Sc(1-¢)VT+uc, 3

the relatively small curvature of the boundary, however,

these sources can move along the boundary. This movemewherej, is the concentration fluxy is the fluid velocity,D
appears to prevent the establishment of a single, dominai the concentration diffusivity an§, is the Soret coefficient
domain, in contrast to the patterns observed in the rectangli26,27. Due to the influence of the concentration on the
lar cell. The radius of curvature of the boundary, howeverdensity of the fluid and hence the buoyancy, there is a feed-
does not appear to be critical in determining the overall dy-back of the temperature gradient on the fluid flow. As men-
namics. In experiments in a circular cell with a radius oftioned above, for the mixture studied here, the sigrsois

Convection in mixtures can be qualitatively different from
hat in pure fluids, particularly near onset. The mixture adds
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Reduced Rayleigh Number FIG. 2. Boundary shapes used in the present w@kStadium-
shaped cell, with a radius of curvature of the rounded ends of 5.5
cm and straight sections of length 8 cifl) rectangular cell of
dimensions 11 x 15.5 cft In addition, two circular cells were
studied, having radii of 11 cm and 5.5 dsee the tejt The size of

the larger circular cell is illustrated by the dark borders above. The
height of all cells was 0.4 cm.

I

FIG. 1. Bifurcation diagram for binary fluid convection with a
negative separation ratio fa¥<—|L£|. Due to the coupling of the
concentration flux to the temperature gradiena the Soret effegt
the bifurcation is changed from supercritical, as in a pure fltfioh
line), to subcritical(see the text Convection begins at a reduced
Rayleigh number .., when the temperature difference is increased,
and disappears at a saddle nodeavhen the Rayleigh number is
decreased. The patterns become stationary at Rayleigh nurhber . EXPERIMENT AND ANALYSIS TECHNIQUES
SOC indicates stationary overturning convection and TW traveling

wave. A. Apparatus

The experimental setup is similar to that described in de-

such that the onset of convection occurs as a subcritical Hog#il in Ref. [20]. Convection is initiated by applying a tem-
bifurcation. In this case, the linearly unstable state at onsderature difference to the layer of the fluid mixture. The
has a frequency very different from that of the stable coniop-plate temperature is controlled by a flow bath. A film
vecting state to which it evolves. The bifurcation diagram isheater on the bottom plate is connected to a feedback loop
illustrated in Fig. 1, where the Rayleigh number is given inthat controls the temperature difference using the measured
terms of the critical value for onset in a pure fluid, which is top- and bottom-plate temperatures as inputs. Using this ar-
the notation used in the remainder of this paper. As can bgangement, a temperature stability of less than 1 mK can be
seen from Fig. 1, the onset of convection takes place at achleved over days, while the temperature difference is uni-
higher Rayleigh number in the mixture than in a homoge-form over the whole cell to better than 3 mK. Patterns are
neous fluid. The bifurcation is characterized by the values o¥isualized using a white-light shadowgraph and recorded us-
the onset Rayleigh number, and the saddle node,. As g a charge-coupled device camera, computer controlled via
the Rayleigh number is increased, the nature of the conve@ general purpose interface biGPIB). _
tion asymptotically approaches that in a pure fluid and be- In the experiments described here the height of the con-
comes stationary at a Rayleigh number denoted*as vection cell was fixed to 4 mm by a set of precision-ground
It is convenient to introduce two new dimensionless pa-9lass spacers. Four cells with three different shapes were

rameters to describe convection in a mixture, the separatioptudied in order to elucidate the differences in the dynamics
ratio ¢ and the Lewis numbect: induced by the boundary geometry: two circular cells, a rect-

angular cell, and a stadium-shaped cell. To make contact

B with previous experiments, a circular cell with a radius of
y=-c(1-¢c)S—, (4) 11.0 cm and thus an aspect ratio= R/h) of 26 was used;

a this is the size of the cell used in Ref20-27. The other
shapes were obtained by placing a Teflon insert inside this
cell. These inserts had the rectangular and stadium shapes cut
L=—, ©) out as shown in Fig. 2. The stadium-shaped insert was used
to bridge the extreme cases of the circular and rectangular
shapes. In order to check for a possible dependence of the

I . . -
where f=p “(dploc) is the solutal expansion coefficient. patterns and their dynamics on cell size, a second circular

For < 0, the Soret effect tends to stabilize the fluid IayerCeII was studied, with a radius of 5.5 cfice., T'=13), cor-

against convection. The quantltfgus a measure of the dr|.v- responding to that of the curved parts of the stadium-shaped
ing of convection due to Soret-induced concentration differ-

ences relative to that due to thermal expansion. The bifurcaqe"'
tion diagram in Fig. 1 corresponds tp<<—L. For the
mixture studied here, of 8% ethanol in water at a mean tem-
perature of 25°C,y=—0.24 [28]. The critical Rayleigh In discussions of pattern formation, it is customary to in-
numbers in the largest circular container studied here argoduce an order parameter to describe the breaking of spatial
r.o=1.4 andr=1.23[20]. The Lewis numbeL=0.01, in- symmetry leading to the pattern in question. In the case of
dicating the very slow time scale for the diffusion of concen-traveling-wave convection, the oscillatory nature of the in-
tration relative to that for heat, resulting in relatively long stability is accounted for by the assumption that the order
time scales for the dynamics. parameteA(x,t) is complex. Thus the experimentally deter-

B. Analysis techniques
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mined shadowgraph intensity, corrected for inhomogeneities
in contrast by subtracting and dividing by an image in the
quiescent state, is assumed to be the real part of a complex
order parameteA(x,t)

I(x,1) =R A(x,1) ] =[|A(x,t)[[cod ¢(x,1)], (6)

where ¢(x,t) is the phase, anfiA(x,t)|| is the amplitude of
the order parameter. Since the amplitude is found to vary
slowly in space and time, it is the spatial and temporal de- ¢

pendence of the phase that determines the wave vector and
frequency of the pattern with

(c)
at¢(xvt):w(xit)! (7)

V o(x,t) =k(x,t). (8)

In order to determine the phase and amplitude of the order
parameter, we apply an algorithm similar to that employed
by Egolf et al.[29] to determine the wave number in station-
ary patterns in a pure fluid. The key assumption in this analy-
sis is that, away from defects in the pattern, the time depen- :
dence of the shadowgraph intensity is well approximated by Frequency (1.6,2.5) ~ Wavenumber (2.7.3.2)
a harmonic oscillator, and the phase of the order parameter
varies much faster than its amplitude or frequency. In this
case, the frequency is well approximated by

921(x,t)
I(x,t) °

w?(x,t)=—

©)

This assumption is found to be valid for the experimental
patterns studied here, after sufficient filtering to remove non-
linearities in the response of the shadowgraph. The phase of
the order parameter is obtained using the measured fre- Amplitude (0.2,0.3) Direction
guency and the harmonic assumption as

FIG. 3. An analysis of a shadowgraph image for a pattern in the
il (X,1) stadium cell using the algorithm described in the text. The image
m) , (10) was recorded at a Rayleigh numberref1.4, after a long transient
period. The scales are indicated in brack@thkite,black. (a) Raw
shadowgraph image, corrected for inhomogeneities in the shadow-
graph intensity by subtracting and dividing by an image in the qui-

d(x,t)=tan"?!

and the amplitude of the order parameter is given by

gl (x,t) 21112 escent state(b) the phase. Ir(c) the frequencyw is shown, nor-
[A(x,1)]|= |2(X,t)+( i ) (11 malized by 1. The wave number, normalized by %, is shown in
o(X,t) (d). Finally, (e) and(f) show the amplitude of the order parameter

) and the direction of the wave vector, respectively.
Other properties of the pattern, such as the wave number

|k(x,t)|, the wave-vector directiom(x,t)=k(x,t)/k(x,t), gorithm[20], demonstrating that this basic result is indepen-
and the curvatur& -n(x,t), can then easily be determined dent of the details of the demodulation algorithm.
from the phase. Previous discussions of the dynamics of traveling-wave
Shown in Fig. 3 is an example of a demodulated shadoweonvection have centered on the location and dynamics of
graph image described above, for a traveling-wave state itopological defects in the phase fidl2l1,22. These studies
the stadium-shaped cell. The raw shadowgraph image iwere carried out in a circular container, where the patterns
shown together with the phase, amplitude, frequency, waverganized into a state with a small number of domains of
number, and wave propagation direction determined fromocally parallel traveling waves separated by lines of topo-
the wave vector. As can be seen from the figure, most of théngical defects. It was foun2,3( that the dynamics of the
information about the pattern is contained in the phase fieldpatterns could be reduced to a description in terms of phase
and this is true for all the experiments conducted to datedefects. As discussed below, this is also found to be the case
irrespective of the particular shape of the cell boundary. Thén the other cell shapes studied here. Hence we will analyze
importance of the phase field was recognized in previoushe patterns by identifying and tracking the topological de-
studies in a circular cell using a different demodulation al-fects in the phase field.
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FIG. 4. (a) Schematic diagram of a topological defect in the Phase field Defect map

phase field(b) A similar schematic corresponding to the discrete i . .
case. Arrows indicate the path of integration around the pixel clos- F!G- 6. The phase field and defect map in a circular st
est to the actual phase defect. also Ref[21]) atr=1.4. Departures from a circular boundary vis-

ible in the figure are due to obstructions in the optical path of the

At logical defect in the ph . . laritv in th shadowgraph. The pattern rotates as a wiimehe clockwise di-
opological detect In the phase IS a singularity in erectiorj, and so all of the defects at the boundary have the same

field at which the phase is undgfineq. This point is the Crc’SS('negative charge. In the interior of the cell, the boundaries between
ing of zeros of Fhe real and imaginary part_s of Fhe Orderthe domains consist of lines of defects of the opposite chérge
parameter(see Fig. 4 However, due to the discretized na- oqer to conserve topological chajgéSee text for details.

ture of the experimentally determined phase fields, this defi-

nition i§ an unsuitable_basis for a pre_lctical algorithm for | the remainder of this paper, time and distance are given
calculation[22]. Alternatively, a contour integral around any in units of the thermal diffusion timerf=h?/xk=124 9 and

point in the phase field gives a vanishing value except whene height of the celll{=4 mm), respectively.
the contour contains a topological defect, in which case,

IV. RESULTS AND DISCUSSION

§ ¢pdb=c2, (12 We first present a brief summary of previous findings for
the dynamics of traveling-wave convection in a circular con-
tainer[21,22. This discussion will focus mainly on the de-
wherec is the topological charge of the defect, which indi- scription of the dynamics in terms of topological defects in
cates the direction of the phase change around the contour gfe phase field. In addition, we present recent data obtained
integration. In this papec>0 (<0) corresponds to phase in a smaller circular cell in order to study the effects of cell
increasing in the counterclockwiselockwisg direction.  size on the pattern dynamics. This discussion will introduce
The integration of Eq(12) can readily be discretized, and so many aspects of the phase defect description that are impor-
it was used to determine the locations of topological defectsant in an understanding of the patterns and dynamics in the
by integrating the experimentally determined phase fielthther container shapes studied.
along a loop around every camera pixel. An example of the Figure 6 shows the phase field and defect map for a
results of this procedure is shown in Fig. 5, where the phasgaveling-wave pattern in a circular cell'&26) using the
field of Fig. 3 is shown together with the corresponding de-demodulation algorithm and defect identification techniques
fect map. In the following, we will focus on the dynamics described above, after an initial period of self-organization.
and statistics of these defects and their relation to the physifhe most obvious feature is that all the phase defects on the
cal patterns observed in the shadowgraph images. boundary have the same char@edicating that the rolls are
traveling in the same angular direction along the edge of the
iR cell). Four large domains of locally parallel traveling waves
* make up the bulk of the pattern. In the center of the cell,
where the domains overlap, a region of cross-roll instability
is observed. Apart from a small number of isolated disloca-
tions, the domains consist of traveling waves of nearly con-
stant wave number and frequency. In addition, lines of de-
fects divide the different domains, some of which can also be
identified with line sinks of traveling waves. Furthermore,
the magnitudes of the phase velodibut not the directions
in the different domains are very similar. The difference in
the direction of the phase velocity is given y=2/p,
where p is the number of domains. In the case shown,

FIG. 5. The phase field determined from the shadowgraph im=4 SO the traveling waves in the different domains propa-
age of Fig. 8a), together with the map of topological defects. The 9ate approximately at right angles.
defects were determined by calculating a contour integral around The fact that the traveling waves in all the domains propa-
each pixel in the imagésee text The full circles correspond to gate clockwise with respect to the boundary leads to the im-
defects of positive topological charge, and open circles are defecfgression that the pattern rotates as a wifaleere the pattern
of negative charge. rotation is about two times slower than the wave rotation
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o FIG. 7. Time evolution of the topological
w1507 charge in the phase field and the number of de-
.é 100- o fects in the larggsolid) and small(dashedl as-
5 - TR I P " et NN e pect ratio circular containers, illustrating the dy-

sg- M, T el PP . .
Z v namics of mature patterns in stable, globally

0 rotating states. The net topological charge is con-

stant and determined by the number of rolls
o 60 ®) around the circumference of the container. The
B0 40t e, o I StV S e e £ e g o S S total number of defects is larger than the net
_§ 204 charge, reflecting the presence of cross-roll
7': patches in the patterns. The similarity between
0 0 the dynamics in the large and small aspect ratio
gﬂ -20- containers shows that the dynamics of the pat-
_8. -40- terns does not depend strongly on the size of the
8 60— cell.
-80
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time /1

Since the sidewalls are thermally insulating, the rolls arebally, as illustrated by the constant topological charge. Fur-
oriented perpendicular to the boundary. Thus defects in théhermore, the patterns are well ordered as illustrated by the
phase occur naturally at the boundary, with the sign of theelatively constant total number of defects as a function of
defect charge indicting the direction of motion of the rolls. time (Fig. 7). In addition, the figure shows that all the major
Due to the conservation of topological charge, this arrangefeatures of the dynamics scale with the system size. The
ment of rolls constrains the total charge within the pattern tadifferent signs of the topological charge in the two cases
be equal to that along the bounddB2]. This, in turn, leads indicate our general observation that global rotation is
to a total net topological charge in the interior of the con-equally probable in both directions. Over many runs, we
tainer ofC=#I"= 74; because every roll ends in a defect atfound an approximately equal distribution of directions.
the boundary, and the wave number is well approximated by We now refine the description of the dynamics in the
k= . Note that the total charge must be an even numbewircular container in terms of the motion of the phase defects
because rolls are created only in pairs. in order to set the stage for a discussion of the dynamics in
From these considerations, it can be seen that, for a stably
rotating pattern, the dynamics of the phase defects has to be () /-
relatively simple. The net chargkof the phase field must be =
constant in time and given by the roll wave number and the
circumference of the boundary. The situation for the total
number of defects is less simple. The intersections of domain
boundaries within the cell frequently trigger regions of cross-
roll instability which, in the phase defect picture, correspond
to ordered lattices of positive and negative defects. The cre-
ation and destruction of cross-roll patches within the cell can
lead to sizable fluctuations in the number of defects. How-
ever, in order to have a stable globally rotating state, the
extent of such cross-roll patches is limited, and this leads to
a limit in the fluctuations in the number of defects. The total
number of defects\V is approximately the total charge and
the number of defects in the central cross-roll patésC
+Nggr- In the circular cell,{Ncg)=C, consistent with a
small region in the center consisting of cross rolls. Assuming

~—
-
4 ’
that the creation of cross rolls is a random process, a Pois- ff‘ ﬁ
sonian distribution is expected, which would indicate that
=490 =520

WANZ)=(Ncr)=C. This estimate is consistent with the
data in Fig. 7, which shows the time evolution of both the F|G. 8. Time evolution of the convection pattern in the rectan-
total number of defectdV” and the topological chargé, in gular cell, during the creation of a new traveling-wave source in the
both the large and the small aspect ratio circular containersower right corner(at r =1.37). The new source evolves to domi-
In both cases, the mature states of the patterns rotate glaate the entire pattern withir 1007 (see text for details
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Number of defects

FIG. 9. Time evolution of the topological
charge and the number of defects in the rectangu-
lar container. Dashed lina,=1.39, just above
Ico; the pattern is very robust and dominated by
a single source in one of the corners. Thick line,
r=1.37; and thin liner=1.36. In these cases,
the (corne) location of the dominating source
changes with time, and unsteady dynamics is ob-
served. Also shown in the figure is the width of
the frequency distribution averaged over the cell.
When new sources appear, the pattern is strongly
perturbed.
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other boundary shapes. One of the dominant features in the A. Rectangular cell

patterns_(cf. Fig. 6 is the Iipes of defegts that form the Over large regions of Rayleigh numberr,) the dy-
boundaries between domains of traveling waves. Wherg,mics of the patterns in the rectangular cell are simpler than
these “domain boundaries” meet the cell boundary, they,se gpserved in a circular container. Typically, sources of
“source” of one domain of traveling waves coincides with @ o eling waves form in the high-curvature regions in the
sink” of the other. In terms of phase defects, a source of .o ners of the rectangular cell, and these sources generate
traveling waves consists of a location of pair production Ofgne gominant domain that fills the entire cell, resulting in a
defects of opposite charges. A sink in this respect can bgy|asively uniform pattern. A pattern similar to this can be
treated as a point at which a positive and a negative defe¢t,o, in Fig. &), where a raw shadowgraph image rat
annihilate. However, there is an asymmetry between SOUrCes; 37 js shown. The fact that there is one dominant domain
and sinks in that line sources are observed, while sinks OCCUheans that there is only one source and one corresponding

only as points. It is the fact that these domain boundar.|e§ink of traveling waves in the pattern. This source is spatially
meet the cell boundary that allows for the constant creations o4 in one of the corners. while the sink is located in the

separation observed inside the cell and around the boundary, .5 qular cell is typically stable and close to zero, since the
This will become important in the other cell geometries, yofacts are created in pairs at the source. There is only a very
where sources of traveling waves can appear on the boundima|| number of defects in the interior of the cell, since there
ary spatially separated from sinks. Furthermore, the crossgre no competing domains leading to cross-roll patches, and
roll patches in the center of the cell are locations of pairpair-created defects are annihilated in the sink. This can be
creation and annihilation, which in some circumstances cageen by the dashed curve of Fig. 9, where the temporal evo-
spawn a new domain of traveling waves and thus also act aations of the topological charge and the number of defects
a source. Thus the appearance of sources of traveling wavesie shown. The homogeneity of other parameters is illus-
whether at the boundary or inside the cell, can deeply affecirated by the width of the frequency distribution{( »?))

the statistics of the phase defects. This will turn out to beacross the whole cell. In such a state, isolated occurrences of
important in the rectangular and stadium-shaped cells digpair creation(and annihilation of defects are observed rou-
cussed below. tinely within a homogeneous domain of traveling waves. In
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cycle can begin agaifi.e., with an effectively reduced Ray-
leigh number in another cornerConsistent with this is the
fact that the duration of the observed transigisee Fig. 9
corresponds to the time it takes for the phase to propagate
across the whole cell. This process is illustrated in the time
evolution shown in Fig. 8. Unfortunately, due to the very
long time scales in this system, collecting enough statistics
for a proper dynamical systems analysis of this switching
Frequency (1.5,3.7)  Amplitude (0.2,0.3) phenomenon and reconstructing its attractor is impractical.
In Fig. 9 the defect statistics for two runs at lower Ray-
dg- - - leigh numbers (=1.37 andr=1.36) are also shown. The
. appearance of new sources can clearly be seen in the time
. dependence of the width of the frequency distribution. At
times when new sources appear, the frequency width in-
L : creases significantly due to the high frequencies introduced
- via the new source. Following the transient associated with
. such a switch in the dominant source, the frequency width
Swiinis s §6 & 0s® returns to its previous smaller and constant value.
Phase (-7,m) Defect map As was the case in the circular cell, the dynamics can be
described in terms of the statistics of the phase defects. This
FIG. 10. Pattern in the rectangular cell during the creation of &g j||ustrated in Fig. 9. At high Rayleigh number, the net
new source in the lower left corndia) The frequency field, show- topological charge is constant and zero, and the number of
ing a large frequency difference between the competing domaingyefects in the cell is small and constant. There is a single,
The frequency of the new source is close to the Hopf frequencyg;apie qominating source on the boundary, consistent with
where_as the established domain is at the stable finite-amplitudﬁ,]e net topological charge. The absence of (,:ross-roll patches
Fravhe“ng'wzve fr?quencg' ;hus, there are _diffe(rjent p;]ha(sel;/ e:]ocitieiss indicated by thédsmall t(.)tal number of defects. The fact
In the two domains, and the new source invades the(sek the . B
text and Fig. & (b) The amplitude of convection, which is reason- that stable sources can be located in the corners is most prob-

ably homogeneous across the two domains. Inspection of the pha@Iy due_ to _the very high curvature of th_e boundary in cor-
field (c) shows that the wave number is different in the two do- "€"Ss which is zero elsewhere. In the stadium-shaped cell, the

mains. Finally,(d) shows the corresponding defect map with de- Situation is different. Stable, spatially localized sources are
fects making up the boundary between the two domains. not observed. Unstable sources do, however, appear along
the boundary.
the future, this situation may be useful in studying the con- Now we turn to the more active dynamics observed at
ditions under which traveling waves are unstable to the prolower Rayleigh numbefe.qg., atr =1.37) in the rectangular
duction of isolated defects. cell. In Fig. 9, the topological charge is constant during pe-
At smaller Rayleigh numbers <r<r.,, the dynamics riods in which the pattern is stable and dominated by a single
is less steady. While sources of traveling waves are still losource or coexisting sources. The value of the charge de-
calized in corners of the container, a single source in ong@ends on the distribution of the sources along the boundary
corner no longer dominates the pattésee Fig. 8 The ef- and the locations of domain walls. However, when new
fective Rayleigh number changes there, most probably due tsources appear, there is a change in the topological charge on
the asymmetric proximity to a boundary in the lateral direc-a comparatively short time scale, corresponding to that of the
tions at different points close to the corners of the £&d]. high frequency transients described above. In Fig. 9, this
This may occur via an inhomogeneous mixing or macrods most clearly seen in the=1.37 data(thick line) at t
scopic flows, leading to variations in the separation ratio at=210r, where the charge changes fréis 20 toC= —10. In
these locations. Transient regions of convection appear ithis case, the change in topological charge is large because
these corners having very different frequencies of oscillatiorsources in corners opposite each other compete for domi-
[23] as compared with the rest of the pattern. An example ofiance. In addition, the resulting counterpropagating waves
this is illustrated in Fig. 10. When a new source appears, thereate regions of instability and hence a large increase in the
frequency of the new domain is very close to the Hopf fre-number of defects in cross-roll patches. However, during an-
guency, observed at the onset of convection. Thus the phas¢her change in the dominating sour@eg.,t=100r), there
velocity (v=w/k) in these domains is much larger than thatis no significant increase in the total number of defects.
in the rest of the cell. Consequently, the traveling-wave doThere is, however, a pronounced change in the net topologi-
main belonging to the newly formed source spreads ovetal charge, since neighboring corners are switching and fre-
much of the cell, while its frequency decreases slowly,quently a single line of defects divides the resulting domains.
evolving to the frequency of the stable traveling-waveSimilarly, the dynamics of the run at=1.36 (thin line) is
branch. At this point the domains present in the cell haveeflected in the time evolution of the defect statistics. The
comparable phase velocities and subsequently coexist. l@ppearance of new sources can be inferred from changes in
many cases, however, the spreading of the new source is fatbte net topological charge of the pattern and also increases in
enough to eliminate any other domain, at which point thethe width of the frequency distribution. New sources appear-
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(a) o8 (b) 5° e is shown together with the corresponding defect map. This
of & -» b figure can be compared to another run shown in Fig. 5 in
ocﬁc‘,

which the system is in a globally rotating state. As was the
case in the rectangular cell, global rotation of the pattern is
absent in the presence of a source of traveling waves at the
cell boundary. In contrast to the rectangular cell, however,
the pattern in the stadium-shaped cell is not dominated by a
single domain. Furthermore, a source at the boundary is typi-
cally not stationary in the stadium cell as it is in the rectan-
gular cell, but moves along the curved parts of the boundary.

3 o Q’CO
— et

—————— %

== -

o,
.
Y
® o
Y o
LAY s I I

- R o . . ! :
S ° et This is plausible since the curvature is constant along this
Phase Defect map part of the cell, indicating a kind of symmetry between

. _ _ points there.

FIG. 11. Snapshot of the evolution of a pattern in the stadium- o a5 the case in the circular cell, the globally rotating
shaped cell at=1.37. In contrast to the one shown in Fig. 5, this 504 that are observed in the stadium cell can be described
pattern does not rotate globally. This can also be seen in the dlsml]sing the time evolution of the total number of defects in the
bution of topological charge around the boundesge text pattern and the net topological charge. Again the charge in-
o . . side the pattern matches that along the boundary and is con-
Ing 1n the corner opposite the dominant one are also markegi[ant in time. Furthermore, the value of the topological
by an mcreasfe in the tltl)tal tntl;]mbber ofddefet;:t?, due ttr? tz%harge reflects the length of the circumference of the cell
appearance of cross rolls at the boundary between the %e., the number of defects is equal to the circumference in
mains. units of the cell height This is illustrated in Fig. 12, where

. the thin line shows a globally rotating state in the oval cell at
B. Stadium-shaped cell r=1.4. This state was obtained by increasing the Rayleigh

The patterns in the stadium-shaped cell are more complifumber from below onset to a value where the pattern is
cated than those in the rectangular cell. The boundary of thetationary. In this case, the pattern can be prepared with only
stadium cell is in some sense intermediate between those &f small number of defects. Then the Rayleigh number was
the rectangular and the circular cells, and the patterns exhibftecreased slowly to the traveling-wave regime, at which
features reminiscent of both geometries. At high Rayleighpoint the pattern begins to rotate. Once this state was ob-
numbers (>r,), global rotation of the pattern does occur tained, the Rayleigh number was further decreased toward
but does not appear to be stable. While small fluctuationghe saddle node.
typically do not destroy a globally rotating state and often In a state of global rotation, the total number of defects in
damp out, large fluctuations or changes in the initial condithe cell shows similar statistical properties to that in the cir-
tions can lead to dynamics which, even for very long timescular cell, with \{ANZg)=(Ng)=C, whereC=>56 corre-
(e.g., up to 1 week do not settle into a well defined state. sponding to the length of the boundary of the cell. As the
This is illustrated in Fig. 11, where a snapshot of such a rurRayleigh number is decreased, small fluctuations can lead to
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departures from the rotating state, which in the stadium celhamics of the patterns, even in the complicated states occur-
is less stable than in a circular container. Given a set ofing in the stadium cell.

initial conditions leading to global rotation, however, such

fluctuations are typically damped out. Small fluctuations are C. Interaction of defects

more common at lower Rayleigh.numbers, anq thus in this Since most of the dynamics of the patterns can be de-
regime the pattern does not achievetablerotating state.  gqrined within the framework of topological defects in the
This can be seen in the thick line in Fig. 12, which shows theypase field, it is interesting to further investigate their prop-
time evolution of the total number of defects and the topo-grties. As was done in Ref22], we have calculated the
logical charge for a pattern at=1.37(i.e., a state reached by defect-defect correlation functions of both like and oppo-
slowly reducing the Rayleigh number after the system is in &ijtely charged defects, which provide information about the
state of stationary convectiprEarlier stages of this run gave mutual defect interaction potentials. The correlation func-
rise to the dynamics shown by the thin line in Fig. 2., a  tions are determined using the defect positions determined
globally rotating state At r=1.37 global rotation is not by the procedure described in Sec. Il B:

stable, but the pattern remains close to a state characterized

by a constant net topological charge, the magnitude of which C.(X.y)= i E S S S

is still set by the length of the boundary. Figure 12 also ppl XY Npp iz~ Cn ™ Xm)-XE0n=Ym).y Ten O

shows a marked difference in the total number of defects (13)
between this state and the pattern at high Rayleigh number.

Sources of traveling waves now exist along the boundary, 1

and so the pattern is dominated by a smaller number of do- ~ Cnp(X.¥)= N n;n S0t %) XY= Y ¥ P~

mains leading to a reduction in the total number of defects -

inside th_e c_e_II. Itis only Wh_en sources appear within th_e cellyhere 8, is the Kronecker delta functiotwhich is 1 for
that a significant change in the number of defects is obs(:y and zero otherwisg‘and (,,y,) andc, are the Car-
served, which may, in turn, lead to the development of do+esjan coordinates and the charge of tihie defect. The sum
main boundaries, and hence to a change in the global dynarg over all defect pairs, and the correlation functions are nor-
ics of the pattern. This is a mechanism by which, formalized to the total number of defects. We average over
instance, global rotation can be reachieved for short periodgany frames to obtain good statistics.
of time (e.g., around = 3007 in the thick line in Fig. 12 The information obtained from the correlation functions

Such changes can also be seen in the dashed curve of Figan be used to provide a crude interaction potential; how-
12, which presents another runrat 1.37 with different ini-  ever, by definition, it reflects only the probability of finding
tial conditions, far away from a rotating state. %507, a  another defec(of like or opposite chargeat a specified dis-
source inside the cell disappears, leading to a reduction in thiance away. Thus the structure of the correlation function is
number of defects. The appearance of sources of travelingominated by specific arrangements of defects in the pattern.
waves along the boundary is again illustrated well by theln particular, cross-roll patches, with their well defined inter-
changes in the topological charge of the pattérmy., att defect distances, give rise to sharp peaks in the correlation
=180r, 250r, and 336G in the dashed curyeln contrast to  functions, which can dominate their overall appearance. For
the sources in the rectangular cell, however, those in the ovahis reason, we calculated a conditional defect-defect corre-
cell may move along the boundary. Motion of these sourcesation function in which defects located in cross-roll patches
with respect to the sinks leads to gradual changes in theere excluded. We used a criterion to decide whether a
topological charge(e.g., Fig. 12, dashed curve, 100t given defect is part of a cross-roll patch, as described in Ref.
<1807). [22]. In particular, if the number of defectsf any charge

The correlation between changes in the topological chargwithin a radius of 2 of a given defect exceeds 6, it is
and the number of defects is less pronounced in the stadiunsleemed to be part of a cross-roll patch and is exclyiedn
shaped cell than in the rectangular cell. Increases in the nunideal cross-roll patch, the number of such defects would be
ber of defects in the stadium cell are due mainly to the ap12). Figure 13 shows the conditional correlation functions
pearance of sources of traveling waves within the cell. Theséor the four different cells studied, where bafh, andC,,,
sources subsequently influence only the global state of thbave been azimuthally averaged. As can be seen from the
pattern and hence the topological charge, as discussed abovigure, the general characteristics of the correlation functions
However, the appearance of new sources along the boundaaye the same for all boundary shapes. Figur@lshows the
can still lead to an increase in the total number of defectscorrelation function for like-sign defects. Peaks in correla-
depending on the existence and location of a source withition ath, 2h, and & are still visible, in spite of the fact that
the cell beforehand. In case a source exists along the boundefects in cross-roll patches have been excluded from the
ary beforehand, a competition between the domains correanalysis. These peaks are due to the presence of the lines of
sponding to the sources will set in. This will lead to the like-sign defects between domains of traveling waves. In zip-
creation of cross-roll patches and hence an increase in thger boundaries, for example, the distance between defects is
number of defects in the pattern. In general, combining thédn, whereas in perpendicular boundaries it is Zgnoring the
information in the net topological charge with the number ofcollective interactions that give rise to these effects, we see
defects allows a reasonably accurate description of the dythat there is a very strong repulsion of like-sign defects at

046301-10



EFFECTS OF LATERAL BOUNDARIES ON TRAVELING. ..

PHYSICAL REVIEW E 63 046301

0,22 0.14-
o~ 0.20- 0.1
2 s -
- y— Nt
S 0164 s= 0,104
S - =
. D = i
_e 0.12 & 0.08
S, o10- 5 0067
o 0.087 N—
a - o 0.04-
) 0.06 o
0.04 U 0.02-
0.02]
0.00- 0.00
] 2 3 4 0
(a) (@)
0.10] 0.05-
o~ 0.00-
L 0.0s- w004
.E S
0.07 =
= =
,  0.06-] = 0.037
L oo e
[~ = 0o
e 0,04 o X
o A
< 0.03- o
c i
) 002 0.01
0.01] O
0.00-% : : T : 0.00 T T T 1
0 1 2 3 4 5 0 1 2 3 4 E

separation / h separation / h

(b) (b)

FIG. 13. The conditional correlation functio, for like-sign FIG. 14. Rescaled correlation functions fa¥ like-sign defects
defects(a); and C,,, for opposite-sign defectéb). Full line, large ~ Cpp. and(b) opposite-sign defects,,,. The data are the same as in
aspect ratio circular container; long-dashed line, stadium-shapefid- 13, but scaled by multiplying by the square root of the lateral
cell; short-dashed line, rectangular cell; long-short-dashed |ine(;onvection cell area. The same notations are used. For defects of
small aspect ratio circular container. For defects of the same sigrihe same sign, this rescaling works well. For oppositely charged
the correlation function goes to zero for small values of separatiofflefects, the scaling is not as gotmke text for details
of defects, indicating a repulsive interaction at short distances. For
oppositely charged defects, the correlation function increases fgpvercounted. In contrast, the correlations between oppositely
small separation, indicating an attractive potential. charged defects do not obey this scaling as precisely, as can

be seen in Fig. 1db). While the general trend of decreasing
short distances, as well as a small attractive force betweegorrelations with increasing system size is still observed in
defects at larger distances. Note also the increase in correlg;—np, the lack of exact scaling may indicate a slight differ-
tion with decreasing system size. ence in the interactions of unlike-sign defects in different

In Fig. 13b), the correlation function for oppositely containers. Alternatively, the different total number and

charged defects is shown. In contrast to the case for like-siggharge of defects in the various containers could result in a
defects, the correlation function continues to increase agifferent statistical sampling o).

small distances. This indicates a short-range attraction of op-
positely charged defects. The dip @,, present at~1.5h
indicates the existence of a small potential barrier in the in-
teraction between defects. At shorter distances, the interac- We have presented a study of the dynamics of traveling-
tion is strongly attractive, and defects come together andvave convection in large aspect ratio containers. It is found
annihilate. At larger distances the interaction is slightly re-that there is a strong dependence of the global dynamics on
pulsive. the shape of the lateral boundary. In a circular container, the
In order to understand the dependenc€gf andC,, on  pattern evolves to a stable state, composed of several do-
the size of the container indicated above, we have rescalemains of locally parallel traveling waves, and exhibits global
the correlation functions by the square root of the respectiveotation, apparently irrespective of the size of the system. In
areas of the different convection cells. As can be seen in Figcontrast, the dynamics in a rectangular cell is dominated by a
14(a), this scaling works well for the correlations of like-sign single domain of traveling waves originating in one corner of
defects. This is probably due to the fact that most of thethe cell. For Rayleigh numbers close to the saddle node, the
defects of the same sign are arranged in lines correspondirdpminance of a particular corner changes with time, and we
to the domain boundaries. Thus in the normalization of thespeculate that this is due to a change in effective Rayleigh
correlation functiondi.e., Eq. 13], the number of pairs of number close to the corners. This in turn is likely to be due
defects contributing taC,,, and C,, at short distances is to the close presence of two boundaries at these points that

V. CONCLUSIONS
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can influence the properties of the instabiliy9,18. Quali- Finally, we have investigated thiecal interactions be-
tatively similar behavior is observed in a stadium-shapedween both like-sign and opposite-sign defects. The interac-
cell; however, due to the curvature in the boundary, the dytions are similar in all the cell shapes studied here. Oppo-
namics of the patterns in the stadium cell is somewhat difsitely charged defects exhibit an attractive interaction
ferent. Sources appearing at the boundary are not confined pmtential, but have a small potential barrier at distances of
specific locations but move continually. Depending on thethe order of the height of the fluid layer. In contrast, like-sign
value of the Rayleigh number and on the initial conditions,defects exhibit a short-range repulsive potential, which can
globally rotating states may be observed, but they are ndbe approximated by a hard-core potential, and a small attrac-
stable at long times. tive interaction at larger distances. These findings for the
We have shown that these different dynamical behaviorgorrelation functions are consistent with previous investiga-
can be described in terms of the dynamics of topologications in a circular cel[22] and indicate that the local inter-
defects in the phase of the complex order parameter. A kegctions between defects do not vary with the shape of the
insight gained from this picture is the fact that topological container boundary. Thus there appear to be additional non-
charge is conserved, which leads to a balance of defects &ical and/or collective interactions that are responsible for
the boundary and within the cell. A rotating state is characthe very different global dynamics of the patterns observed
terized by a constant net charge on the boundary, achieved the different cells.
by the presence of lines of defects located in domain bound-
aries mlthe interior of th(_a cell. Sogrces qf traveling waves ACKNOWLEDGMENTS
can be identified as locations of pair creation of defects, and
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