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Abstract

Traveling-wave convection patterns in binary fluid mixtures of ethanol and water have been studied experimentally in con-
tainers with lateral boundaries of different shapes, including circular cells of two different sizes, rectangular and stadium-shaped
cells. The nature of the patterns depends qualitatively upon the shape of the lateral boundaries. This paper analyzes these
patterns in terms of topological phase defects in the complex order parameter, providing a reduced description of the sys-
tem. The experimentally measured phase fields (and hence the patterns) can be reconstructed from the location and charge
of the topological defects. For good agreement with experiment, the structure of individual defects is found to depend on
both nearest-neighbor interactions of like-sign defects and the global structure of the patterns, reflected by the net charge
of the defects. Further implications of these results for understanding traveling-wave patterns and dynamics are discussed.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Non-equilibrium systems are commonplace in our
physical world. It is fair to say that understanding
and controlling the behavior of such systems driven
far from thermodynamic equilibrium is important in
many, if not most areas of science and engineering
[1,2]. Phenomena that have received attention in recent
years range from technologically important problems
in areas of engineering and biology to fundamental
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studies of model physical systems. Topics in the lat-
ter category include studies of granular materials[3],
convection in fluids[4,5], wave and pulse phenom-
ena in chemical reactors[6,7], and driven magnetic
vortices in superconductors[8,9]. Problems of practi-
cal interest include studies of optical patterns in large
aspect ratio lasers[10], population dynamics in epi-
demiology and ecology[11,12], pattern formation in
bacterial colonies[13,14], and studies of the dynamics
of the heart[15]. A fascinating observation that drives
much scientific interest is that phenomena exhibited
in many of these systems are remarkably similar in
spite of the fact that the underlying physical systems
are very different[1]. Thus, a unifying description
of many of these phenomena may be possible, likely
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exploiting concepts developed in nonlinear dynamics.
Due to the disparate microscopic origins of the pat-
terns, a phenomenological approach has proven use-
ful, describing the patterns and dynamics in terms of
an order parameter. Such a description can describe a
limited set of modes, excited in the system when it is
driven from equilibrium[1,16]. Alternatively, in cases
in which patterns display a high degree of regular-
ity, the patterns can sometimes be described in terms
of defects in an otherwise regular pattern[17,18]. In
the case of the complex Ginzburg–Landau equation,
progress has been made in developing a reduced de-
scription in terms of defects in the phase field[19]
(also called vortices[20]). In this ‘particle-field’ de-
scription, the dynamics of the defects are given by the
local values of the phase field, obtained from the de-
fect positions, as a linear superposition of the contri-
butions of all of the defects[19].

Here we deal with convection in binary fluid mix-
tures, which provides a model system for studying
non-equilibrium traveling-wave phenomena. In partic-
ular, one can exploit the high degree of control that is
attainable in convection experiments[21], as well as
the fact that, at least in principal, theoretical models
can be firmly based on the Navier–Stokes equation[4].
In an important range of parameters, this system can
exhibit quasi-linear traveling waves which have been
successfully described by model equations[16,22].

Recently, there has been progress in developing a
‘particle-field’ description of patterns and dynamics in
binary fluid convection[23,29]. In that work, patterns
in a circular cell were reconstructed from the locations
of the phase defects, and the dynamics were described
in terms of the local wave vector at a defect imposed
by the phase field of all the other defects. The work
described here focuses again on the patterns in this
system, but seeks a more general description, capable
of treating patterns in convection cells having a variety
of shapes, including circular cells of different sizes,
and rectangular and stadium-shaped cells.

The patterns in circular cells were found to rotate
globally, meaning that the direction of the wavevector
performs a complete, 2π rotation along the boundary
of the cell. This breaking of chiral symmetry of the
patterns is apparently due to the fact that sources of

waves on the boundary of the circular cell are unsta-
ble. In these globally rotating states, the phase defects
were found to have a non-zero pitch. In this paper,
a variety of patterns are considered, including those
which rotate globally (i.e., in the circular and stadium
cells) and those which do not (in the stadium and rect-
angular cells). It is found that reconstruction of these
patterns can also be achieved at the level of those done
earlier for patterns in the circular cell. In the more
general case considered here, the pitch parameter of
globally rotating patterns must be augmented by a sec-
ond parameter to describe breaking of(x, y) symme-
try (e.g., in non-rotating patterns). Furthermore, an ap-
proximate scaling relationship is found between these
two parameters and the total charge of defects on the
cell boundary.

The simple, empirical parameterization presented
here describes the main features of all the patterns
observed in all the convection cells studied. It is im-
portant to emphasize however that there is, at this
point, no theoretical justification for this description.
In particular, a rigorous foundation of a ’particle-field’
description of binary fluid convection remains to be
developed. Nevertheless, given the potential gain in
predictive capabilities of such a reduced model, it
appears to be worthwhile to pursue this approach.
Hopefully the reconstruction procedures described
below can provide insights toward a theory of patterns
and dynamics in this and similar non-equilibrium
traveling-wave systems.

The remainder of this paper is organized as follows:
in Section 2we present a brief overview of the aspects
of convection in fluid mixtures relevant to the exper-
iments considered here. For more detailed accounts,
we refer the reader to Ref.[5] for a concise theoretical
model and to Ref.[24] for a more complete description
experimental procedures. Directly relevant aspects of
the experiment, such as the identification and tracking
topological defects in the phase field as well as a phe-
nomenological treatment of the structure of the phase
field that is used in the reconstructions are described
in Section 3. Section 4describes the results of re-
constructions of the phase field and the arrangements
of phase defects observed in the different convection
cells studied. In this section, we focus particularly on
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the connection between locally imposed wavevectors
at individual phase defects and the global structure of
the patterns. InSection 5, we conclude with a sum-
mary describing relationships between the adjustable
parameters in the model used and the statistics of de-
fects in the different cells. Finally, we present a brief
look to the future of work in this area.

2. Binary fluid convection

When convection occurs in a mixture instead of
a pure fluid, qualitatively new phenomena can arise.
This is due to the addition of the concentration as a
second diffusing quantity[5,25]. In cases where the
Soret effect is important, the two diffusing fields (tem-
perature and concentration) are coupled[26]. For the
parameters of the fluid mixture studied here, this cou-
pling changes the initial instability from a stationary
pitch-fork bifurcation into a sub-critical Hopf bifur-
cation [2,25]. The system can be described in terms
of four parameters: the Rayleigh number, the separa-
tion ratio, and the Prandtl and Lewis numbers. The
Rayleigh number,R, is a measure for the thermal driv-
ing and is given by the ratio of the buoyancy force due
to the temperature difference and the dissipative force
due to viscosity[4]:

R = gαh3�T

νκ
, (1)

whereα is the thermal expansion coefficient,ν the
kinematic viscosity,κ the thermal diffusivity,h the
height of the fluid layer,�T the imposed tempera-
ture difference, andg the acceleration due to grav-
ity. A second parameter is the separation ratio,ψ ,
which is a measure of the driving of convection due
to Soret-induced concentration difference to that due
to thermal expansion[25]:

ψ = −C(1 − C)St
β

α
, (2)

whereβ = ρ−1(∂ρ/∂C) is the solutal expansion co-
efficient,C the concentration, andSt the Soret coeffi-
cient.

The fluid studied here was a mixture of 8% ethanol
in water (by weight), which at a mean temperature of

25◦C, corresponds toψ = −0.24 [27]. The critical
Rayleigh numbers (scaled by the value for the pure
fluid R0) are measured to be onset atrco = Rco/R0 =
1.4 and the saddle node atrs = 1.23.

3. The experiment and analysis techniques

3.1. Description of the experiment

The experimental apparatus and procedures used
here are similar to those described in detail in Ref.
[28]. Additional modifications to the experiment,
which were also used in the present work, are de-
scribed in Ref.[24]. The convecting fluid is enclosed
in a cell of heighth = 4 mm with a silicon bottom
plate and a sapphire top plate chosen for their large
thermal conductivities. Feedback loops control the
temperature of the plates such that the temperature
difference is homogeneous across the cell to within
2 mK and stable in time to better than 1 mK. Patterns
were visualized with a white light shadowgraph and
images were recorded using a CCD camera which
was controlled by a PC via a GPIB bus. In the re-
mainder of this paper, times and distances are given in
the natural units of the vertical thermal diffusion time
(τ = h2/κ = 124 s) and the cell height (h = 4 mm),
respectively[27].

The visualized patterns are treated as the real part
of a complex order parameter, which is determined by
the procedures described in Ref.[24].

3.2. Determination of the phase defects

A previous investigation of traveling-wave pat-
terns in binary fluid convection described the patterns
in terms of topological defects of the phase field
[23,24,29]. Here we briefly discuss the procedures
used to identify these defects from the phase fields.
The basic analysis of the patterns including the deter-
mination of the phase field from the measured images
is discussed in Ref.[24], where the algorithms used
are described in detail. The determination of the lo-
cations and charges of these defects is important in
describing both the patterns and the dynamics of the
patterns. Strictly speaking, a topological defect is
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a singularity, at which the phase is undefined. This
corresponds to a crossing of zeros in the real and
imaginary parts of the order parameter. In practice,
a reliable determination using such a definition is
unsuitable due to the discrete nature of the images
[24,29]. Therefore, we base our determination of
defect location on the topological constraint that a
contour integral around a closed loop is zero unless
that loop contains a defect. Specifically:∮

�∇φ · d�s = 2πc, (3)

wherec is the topological charge of the enclosed de-
fect. This charge indicates the sign of the phase change
along the contour. Thus, following the contour coun-
terclockwise,c > 0 (c < 0) corresponds to an in-
crease (decrease) in the phase from−π to π (π to
−π ). An example of a defect map determined in this
way is shown inFig. 1, together with the correspond-
ing phase field.

3.3. Reconstruction of patterns

As mentioned inSection 1, the reconstruction of the
phase field from information about the locations of de-
fects is necessary for a ‘particle-field’ description of
a non-equilibrium system. Such a description, if suc-
cessful, would be a tremendous simplification, reduc-
ing the dynamics of the entire pattern to a many-body
problem concerned with just the phase defects[19].
Progress has been made using this strategy to describe

Fig. 1. (a) Map of topological defects determined from the phase field corresponding to the shadowgraph image shown in (b). The locations
of the defects were determined by calculating a contour integral around each pixel in the image (see text). The full circles correspond to
defects with positive topological charge and the open circles to defects with negative charge.

patterns in binary fluid convection[23]; however in
that work, it was found that the individual defects had
to be given an additional structure to obtain good re-
constructions. Here we will consider this question fur-
ther. To describe patterns in cells of different shapes,
we find that it is necessary to link the structure of in-
dividual defects to the global structure of the patterns.
The focus of this paper is finding an appropriate struc-
ture of defects capable of describing patterns in cells
with qualitatively different shapes.

To begin with, we will be concerned with under-
standing the local structure of a single phase defect.
To a first approximation, in Cartesian coordinates, the
phase at point(x, y) of a defect at(xd, yd) is given
by the angle as measured from the defect’s position
multiplied by the topological charge of the defect

φd(x, y) = cθd(x, y) = c · tan−1
(
y − yd

x − xd

)
. (4)

Fig. 2(a) shows a schematic representation of such a
defect. As discussed below, this structure (i.e., of an
unstrained defect field) is not sufficient to reconstruct
the patterns observed in convection containers with
different lateral boundary shapes. In Ref.[23], recon-
structions of patterns were improved for a circular cell
by introducing a spiral structure to the phase of a de-
fect by adding a radial wavenumber of the form

φd(r) = cθd(r)+ p|(r − rd)|. (5)

Herep is called the pitch of the defect which is lo-
cated at positionrd = (xd, yd). Such a defect structure
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Fig. 2. Representation of the phase field of a single defect. In
(a) an unstrained defect is shown. Additional structure is added to
the defects: (b) a pitch giving the defect the form of a spiral; and
in (c) and (d) a wavevector in thex andy directions, respectively.
In reconstructions, the wavevector illustrated in (c) and (d) will
point in the direction of the nearest-neighbor defect. A large value
of pxd or pyd results in the familiar image of a dislocation in a wave
field. Defects as illustrated in (b) occur in circular cells, while
defects of the type in (c) and (d) occur in patterns in cells with
broken(x, y) symmetry (e.g., rectangular cells and some patterns
in stadium-shaped cells).

is shown inFig. 2(b). This structure breaks the chiral
symmetry since the charge of the defect does not in-
fluence the sense of the spiral. The breaking of chiral
symmetry reflects the globally rotating nature of the
patterns observed in a circular container.

However, in cells with different boundary shapes,
the global structure and dynamics is qualitatively
changed[24]. We found it necessary to include a local
structure to single phase defects to take into account
the different global symmetries of the patterns (e.g.,
that change qualitatively when the lateral boundary
shape is changed). This is achieved by adding a local
wavevector to the phase field inEq. (5), which can be
written in the form

φd = cθd + p|(r − rd)| + pd · (r − rd). (6)

In this model, there are three adjustable parameters in
the determination of the phase field of the defect,

the scalarp and the two components of the vector
pd. Examples of this parameterization are shown in
Figs. 2(c) and (d), where a defect is shown with an
additional local wavevector in thex- andy-direction,
respectively.

In principle, to keep track of the environment of
each defect, these parameters would have to be defined
locally which would lead to a plethora of adjustable
parameters. However, we have found empirically that
this can be avoided by defining the local wavevector
and the pitch in terms of the distance of the defect
from its nearest-neighbor. In the cases studied, this
turns out to be predominantly a defect of the same
charge, due to the fact that most defects are in domain
boundaries, which are built up of like-sign defects.
In these lines of defects, distances to the nearest and
next nearest-neighbor can be similar. In this case, the
signs of the wavevectors are likely to alternate, which
over long distances, reduces the importance of this
addition to the phase. However, inspection of the de-
fect maps indicates that the lines of defects frequently
exhibit significant variations in defect spacing, which
helps to motivate the choice of nearest-neighbor spac-
ing as a relevant parameter. Thus, the phases of the
defects in the reconstruction are taken to be

φd = cθd + εr |δ||(r − rd)|
+εc((x − xd)δx + (y − yd)δy), (7)

whereδ = (δx, δy) is the distance vector to the nearest
defect of the same charge. The total phase field of the
pattern is obtained by taking the sum over all defects,
including those along the boundary (e.g., seeFig. 1).

It should be emphasized that the parameterizations
in Eqs. (6) and (7)are purely phenomenological. In
particular, it is quite possible that the effect of the lo-
cal environment on the structure of an individual de-
fect can be parameterized in other ways. We do be-
lieve, however, that any structure of the individual de-
fect should reflect the global symmetries of the overall
pattern in order to be successful. As we discuss be-
low, Eq. (7)does indeed do a reasonably good job of
reconstructing a wide range of patterns in containers
with widely different boundary shapes.

In Eq. (7), εc is a global scaling parameter for the
wavevector of defects of chargec, andεr is a similar
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global scaling parameter for the pitch independent of
the defect’s charge. As discussed in more detail below,
the relative values (and hence importance) of these
global scaling parameters depend on the global struc-
ture and dynamics of the convection patterns. These
parameters are found to be related to the numbers of
different defects in the pattern. For example, the value
of the parameter setting the scale of the pitch of in-
dividual defects can be regarded as a measure of the
breaking of chiral symmetry of the pattern as a whole.
A different measure of the extent to which chiral sym-
metry is broken is the net chargeC of the defects along
the boundary. We find below that there is a close corre-
spondence ofC to the values ofεr in all cells studied.

The reconstructions shown in the following are the
best results obtained by changing the phenomeno-
logical parametersε in Eq. (7). The quality of the
reconstructions is assessed in the following way: the
field of each defect is subtracted from the experimen-
tal pattern. After the subtraction, the field values have
to be taken mod 2π such that a new phase field is
obtained. If the agreement between the reconstruction
and the pattern were perfect, a constant field (i.e.,
having a wavenumber of zero) would be obtained.
The parametersεr , ε+ and ε− are adjusted to mini-
mize the average of this wavenumber over the entire
pattern. Typical values of this wavenumber for such
best-fit parameters are of the order of∼0.1 h−1 (i.e.,
∼30 times smaller than the experimental wavenum-
ber). From the influence of parameter changes on the
value of this wavenumber (averaged over the whole of
the cell), the errors in the values ofεr,c are estimated
to be ∼0.002 h−2. The reconstructions shown in the

Fig. 3. Reconstructions of a pattern in the circular cell(Γ = 26). In (a) and (b) the phase field and the defect map are shown. Part (c)
shows a reconstruction using unstrained defects(φ = cθ). In (d), the defects are described usingEq. (7); the values of the parameters are:
εr = −0.037 h−2, ε− = −0.006 h−2 and ε+ = −0.030 h−2.

following also appear to be the best-fits according
to visual comparisons of experimental patterns and
reconstructions.

4. Results and discussion

We now describe the results obtained in reconstruct-
ing patterns in the various cell geometries from the po-
sitions of the defects and the model of the defect struc-
ture described above. In the course of the discussion,
the relationship between the parameters introduced in
Eq. (7) and the global structure and dynamics of the
patterns will be elucidated.

4.1. Circular cell

The reconstruction of the phase field for a pattern
in a circular convection cell is shown inFig. 3 us-
ing both unstrained defects and the model described
above. For the latter, the values of the adjustable pa-
rameters for the pitch and local wavevector are:εr =
−0.037 h−2, ε− = −0.006 h−2 andε+ = −0.030 h−2.
Due to the global structures of the patterns in a circu-
lar cell, adding the freedom to choose a locally defined
wavevector does not alter the reconstruction greatly.

From the values of the parameters, it can be seen
that the global rotation of the pattern leads to a rela-
tively high value of the pitch due to the spontaneous
breaking in chiral symmetry. The scaling values for
the local wavevectors for the defects of different sign
of charge also indicate their respective numbers in-
side the cell. Typically one sign of charge dominates,
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Fig. 4. (a) Pattern in a small circular cell with an aspect ratioΓ = 13. The map of defects is shown in part (b). Reconstructions are
shown in (c) using unstrained defects, and in (d) using structured defects as described byEq. (7). The values of the adjustable parameters
are: εr = 0.018 h−2, ε− = 0.015 h−2 and ε+ = 0.003 h−2. Comparison of these parameters with those for the pattern analyzed inFig. 3
indicates that they scale with the size of the cell (see text).

leading to a sizeable value of the corresponding
εc. These points clarify further the previous recon-
structions of traveling-wave patterns in binary fluid
convection[23]. The fact that the dynamics of the
defects reflect the dynamics of the pattern as a whole,
made possible some prediction of defect motion
based on the wavevector field. The global dynamics
in the circular cell are very stable, and so the pitch
and local wavevector are, to a good approximation,
time independent in agreement with previous work
[23].

Fig. 4 shows the reconstructions of a pattern in a
smaller circular cell with an aspect ratio ofΓ = 13. In-
vestigations of patterns in this cell were used to study
the size dependence of the dynamics, including the
dependence of theεr,c parameters on cell size. The
model parameterized byEq. (7)yieldsεr = 0.018 h−2,
ε− = 0.015 h−2 and ε+ = 0.003 h−2. Comparison

Fig. 5. Convection pattern in the rectangular cell: (a) phase field, (b) defect map; (c) and (d) are reconstructions using unstrained and
structured defects, respectively. In (d), the parameters inEq. (7) are εr = 0.008 h−2, ε− = 0.054 h−2 and ε+ = −0.043 h−2. The different
values of theε compared with those in the circular cells reflect the changes in the global dynamics. Instead of a global rotation of the
pattern, the two sources in the corners control the dynamics of this pattern.

with the corresponding values from the larger circu-
lar cell indicates that all parameters scale almost ex-
actly with the size of the cell, keeping in mind that
the signsεr switch, as well as thatε+ andε− are in-
terchanged. This latter point is exemplified by the pat-
terns inFigs. 3 and 4, which rotate in opposite direc-
tions. We findε+/ε− = 5 for the data inFig. 3 and
ε−/ε+ = 5 for Fig. 4.

4.2. Rectangular cell

The patterns in the rectangular cell are qualitatively
different from those in a circular container[24]. In-
stead of globally rotating patterns, there is quite gener-
ally a source of traveling waves in corners of the cell.
In a certain region of Rayleigh numbers, two sources
can coexist which leads to patterns of the type shown
in Fig. 5 (a). The corresponding defect map is shown
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in part (b). As can be seen fromFigs. 5(c) and (d) the
introduction of a local wavevector is necessary to ob-
tain good agreement between the experimentally deter-
mined phase fields and the reconstructions. In particu-
lar, Fig. 5 (c) shows a reconstruction using unstrained
defects, whereas part (d) presents reconstructions us-
ing a pitch and a wavevector. The parameters used
in the reconstructions were:εr = 0.008 h−2, ε− =
0.054 h−2 andε+ = −0.043 h−2. Note that the scal-
ing parameter for the pitch,εr , is a factor of 5 smaller
than in the case of the circular cell. This is consistent
with the much smaller net charge,C, of defects along
the boundary corresponding to a very small breaking
of chiral symmetry.

The fact that the reconstruction inFig. 5 (c) does
not reproduce the number of rolls along the boundary
(which would naively be expected) is due to the highly
non-local effects produced by the summation of the
phase field of many defects. In accord withEq. (4),
all defects influence each spatial location in the same
way. The result is that the singularities imposed by
each defect are only guaranteed to be important on
very short distances from the defects as can be seen
from closer inspection ofFig. 5.

In the case where only one source dominates the
pattern, chiral symmetry is not broken, and the value
of εr used to obtain good reconstructions is consistent
with a value of zero.

Fig. 6. Pattern observed in a stadium-shaped cell. Due to the choice of initial conditions and the strength of driving, this pattern rotates
globally. (a) Phase field, (b) defect map; (c) and (d) are reconstructions using unstrained and structured defects, respectively. The parameters
used in the reconstruction in (d) are:εr = −0.030 h−2, ε− = −0.012 h−2 and ε+ = −0.018 h−2. These values are similar to those for the
pattern in a circular cell shown inFig. 3.

4.3. Stadium cell

The qualitative difference between the reconstruc-
tion parameters for rotating patterns in the circular
cell and source-dominated patterns was investigated
further by studying patterns in the stadium-shaped
cell, in which a variety of different types of dynam-
ics are observed. The dynamics in the stadium cell
are in some sense intermediate between those of the
circular and rectangular cells[24]. Depending on the
Rayleigh number as well as the initial conditions of the
convecting state, both globally rotating patterns and
source-dominated patterns are observed. Examples of
these can be seen inFigs. 6 and 7, where a globally
rotating pattern and one dominated by a single source
are presented. In the globally rotating pattern, the pa-
rameters used to obtain the reconstruction are similar
to those used in the circular cell:εr = −0.03 h−2,
ε− = −0.012 h−2 and ε+ = −0.018 h−2. Given the
similarity of the defect arrangements which reflect the
global dynamics, this is consistent with the discussion
above. If one also considers that a correction to these
values due to the size of the cell would be necessary
for a proper comparison (i.e., as in the case of the two
circular cells), the agreement in the value ofεr is ex-
cellent.

In contrast, the pattern shown inFig. 7 is similar
to patterns observed in the rectangular cell, and the
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Fig. 7. A pattern in the stadium-shaped cell. In this case, the choice of initial conditions and the strength of driving are such that the pattern
is dominated by sources of traveling waves on the boundary and the pattern does not rotate: (a) phase field, (b) defect map; (c) and (d) are
reconstructions using unstrained and structured defects, respectively. The parameters used in the reconstruction in (d) are:εr = 0.001 h−2,
ε− = 0.047 h−2 and ε+ = −0.046 h−2. These values are similar to those obtained for the pattern in the rectangular cell shown inFig. 5.

parameters in the reconstruction reflect this fact, par-
ticularly when compared to patterns in the rectangular
cell dominated by a single source (i.e.,εr = 0.001 h−2,
ε− = 0.047 h−2 and ε+ = −0.046 h−2). The main
difference between the patterns in the different cells
concerns the number of defects within the convection
pattern, which leads to somewhat different values of
the εc and very different values ofεr . Furthermore,
scaling of theε parameters with the size of the cells
would be appropriate here also.

The relationships between theεc andεr and between
C and εr described above are also observed in the
stadium cell. This is significant since two distinctly
different kinds of dynamics are observed in the same
cell. It appears that the dominant feature influencing
the weights of the pitch and the local wavevector is
the global dynamics of the pattern. This implies that
a robust algorithm to determine the values of theε
requires a more detailed understanding of the interplay
between the statistics of defects and global pattern
dynamics.

4.4. Global aspects of the reconstructions
and comparison with the patterns

As can be seen from the pattern reconstructions in
the different cells, the global structure of the patterns
has a strong influence on the structure of individual

defects. Certain symmetries are spontaneously broken
in the patterns, such as the chiral symmetry in the
globally rotating patterns and(x, y) symmetry in the
non-rotating patterns in the stadium and the rectangle.
These symmetries are reflected in the structure of the
individual defects required to reconstruct the patterns.
Apart from the pitch, which was added to the struc-
ture of the defects to address the breaking of chiral
symmetry, it was found that a local wavevector needs
to be added to the defects, when the(x, y) symme-
try is broken (e.g., in cases where the pattern con-
sists of traveling waves moving preferentially in one
direction).

We now discuss in more detail the relationships be-
tween the parameters in the reconstructions. The pitch,
εr , scales linearly with the net charge of defects inside
the cell. Thus

εr = ηC, (8)

whereη is a constant to be determined. This relation-
ship can be seen from the reconstructions in two circu-
lar cells of aspect ratioΓ = 13 and 26, respectively. In
these cells, the values ofεr,c used in the reconstruction
scale linearly inΓ , as was discussed inSection 4.1.

Table 1summarizes data from the different convec-
tion cells, including the numbers of defects in the cells
(Nc) and on the boundaries (Ntot), and theε param-
eters from the reconstructions. The table also shows
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Table 1
Comparison of numbers of defects and reconstruction parameters for different patterns and cellsa

Pattern dynamics N+ N− Ntot ε+ 1
2(N+ −Λ) ε− 1

2(Λ− N−) εr C/2
Circle (Γ = 26) 54 126 72 −31 −30.5 −6 −5.5 −37 −36
Circle (Γ = 13) 43 8 36 3 −6 15 23.5 18 18
Stadium, source 36 36 58 −46 −30 47 30 1 0
Stadium, rotation 70 125 57 −18 −15 −12 −12.5 −30 −27.5
Rectangle, two sources 20 5 59 −43 −39 54 46.5 8 7.5
Rectangle, one source 6 6 49 −42 −39.5 41 39.5 −1 0

a The values of theε parameters are given in units of 10−3 h−2. The measured parameters areNtot, which is the total number of defects
along the cell boundary, andNc, the numbers of defects of chargec inside the cell;C = N+ −N−. With a value ofη = (1/2)×10−3 h−2,
there is excellent agreement betweenηC and εr in all cases. The values ofηc(Nc −Λ) also correlate reasonably well with theεc. Given
that the data implyεr = ε+ + ε− (i.e., Eq. (9)), all patterns can be described to a high degree of accuracy by two parameters,ε+ andε−.
Approximate values of these parameters in different situations can be obtained fromEq. (10)using the constantη andΛ = 1.6 × Ntot.

that εr is ∼C/2 × 10−3 h−2, fixing the value ofη �
(1/2) × 10−3 h−2. A further correlation of the val-
ues of the adjustable parameters that can be seen in
Table 1concerns the relation between theεc andεr .
In all cases investigated it was found that

εr = ε+ + ε−. (9)

While Eq. (9) by itself cannot be used to strongly
constrain the valuesεc, taking Eq. (9) together with
Eq. (8), a phenomenological expression can be written
in the form

εc = cη(Nc −Λ). (10)

HereNc is the number of defects of chargec inside
the cell,Λ is a constant to be determined, andη is
the same as inEq. (8). Inspection of the values ofε+
andε− obtained from experiments (seeTable 1) indi-
cates thatΛ depends on the shape and size of the cell.
A natural measure of the cell size is the total number
of defects,Ntot, along the boundary of the cell (i.e.,
Ntot is the cell’s circumference divided by 2h). An
interesting possibility is thatΛ is related toNtot. We
found that the data are consistent withΛ � 1.6Ntot,
but this does not include a possible dependence on
the cell shape. Furthermore, the data are not yet good
enough to determine an exact relationship.Table 1
indicates, however, that the values ofεc can be es-
timated from the values ofc(Nc − Λ), whereΛ is
given by the above estimateΛ � 1.6Ntot. Alterna-
tively,Λ can be estimated independently from the val-
ues ofε+ andN+, as well asε− andN−. The values

obtained for both signs of charge agree, if they are
evaluated from the same pattern. They are also con-
sistent with the dependence on the total number of de-
fectsNtot discussed above. In the small circular cell,
however, the determination ofΛ gives a value some-
what lower than 1.6Ntot, which is reflected by the
difference between the values ofεc andc(Nc − Λ)/

2 × 10−3 h−2.
To summarize the results inTable 1, the measured

quantities are the number of defects in the patterns of
each sign of charge,N+ andN−, and the total num-
ber of defects on the cell boundary,Ntot. We find that,
given the constraint ofEq. (9), all of the patterns can
be described by two parameters,ε+ andε− (i.e., re-
placingεr , used previously to describe globally rotat-
ing patterns in circular cells). In turn, using the (again
empirical) observation,Eq. (10), ε+ and ε− can be
determined byη and a parameter,Λ, which is given
approximately byΛ = 1.6Ntot.

Although the reconstructions capture the overall
structure of the patterns in all of the cell geome-
tries studied, certain elements are still missing. Most
pronounced is the extreme rigidity of the wavenum-
ber observed in the experiments. This can be seen
directly in the experimental images of the patterns
and also from the wavenumber distributions of the
patterns, which are shown inFig. 8. As can be
seen in this figure, the reconstruction techniques
described here do a relatively poor job of repro-
ducing the narrow wavenumber distributions ob-
served in the case of a rotating pattern. Thus some
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Fig. 8. The wavenumber distributions in arbitrary units for the patterns and reconstructions presented inFig. 3 (part a),Fig. 5 (part b),
Fig. 6 (part c) andFig. 7 (part d). In cases where the pattern exhibits global rotation, the wavenumber spreads in the experimental patterns
are much narrower than those in the reconstructions. In parts (b) and (d), the reconstructions fit better, but there are still discrepancies
between the observations and the reconstructions (see text).

additional mechanism must be involved, which is not
included in this phase-defect description. One such
mechanism is phase diffusion which would tend to
smooth out the phase field. It is unclear at present
how this might be incorporated in a phase-defect
model.

5. Conclusions

We have shown that traveling-wave patterns in bi-
nary fluid convection can be described in terms of

the locations of topological defects in the phase of
the complex order parameter. Such a reconstruction
of the phase field from the defects is one of the nec-
essary ingredients in a ‘particle-field’ description,
which is a candidate for a much simplified descrip-
tion of the patterns and dynamics of non-equilibrium
pattern forming systems[19,23]. For an accurate rep-
resentation of the patterns in different geometries,
we find that the phase field of a single defect de-
pends on nearest-neighbor interactions in a manner
associated with the global structure of the pattern.
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Thus the structure of a single defect reflects the sym-
metry of the global pattern. In the reconstructions
described here, this is modeled by the statistics of
the defects (cf.,Table 1). However in obtaining the
reconstructions, the weights of the pitch and the local
wavevector of the defects were treated as phenomeno-
logical parameters. An open question is whether some
kind of theoretical model can be constructed that re-
flects the relationships implied byTable 1. In addition,
the wavenumber distributions obtained in the recon-
structions are broader than those of the experimental
patterns, in cases where the patterns rotate globally.
Thus some additional mechanism, not included in
the present phase-defect description (such as phase
diffusion), appears to be involved in determining the
patterns.

The overall success of this phase-defect approach
in describing complicated traveling-wave patterns in
a variety of circumstances and with very different
global dynamics is promising. In this description, the
number of parameters needed to describe a pattern
is decreased dramatically to just one or two param-
eters beyond the locations and signs of the defects.
The problem is essentially reduced to a many-body
problem of the interactions of the defects, while
the structure of the phase at a single defect reflects
the symmetry of the pattern as a whole. It might
be possible to construct a self-consistent description
of these symmetries in terms of the distribution of
the phase defects in the cell which, in turn, could
lead to a reconstruction of the patterns without the
need for phenomenological parameters. The more
ambitious goal is to attempt to use this knowledge
of the patterns to predict the dynamics of the sys-
tem using, for example, an approach similar to that
described in Ref.[23] for the patterns in a circular
cell.
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