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Abstract. In the usual description of the granular Maxwell’s demon experiment, where phase separation
occurs due to an instability in the densities, the control parameter scales linearly with gravity. In this
paper we investigate this scaling experimentally using the properties of diamagnetic particles in strong
magnetic-field gradients to reduce and even balance gravitation. We find that phase separation occurs
even at vanishingly small gravitational accelerations as is predicted by other theories. This is due to the
fact that granular samples tend to form clusters as a result of the inelasticity of the particle collisions.
Combining the heat balance of the driven granular gas with the cooling rate and thus the appearance of
clustering, we are able to describe the crossover between the limiting cases.

PACS. 45.70.-n Granular systems — 05.90.4+m Other topics in statistical physics, thermodynamics, and
nonlinear dynamical systems — 51.10.4y Kinetic and transport theory of gases

1 Introduction

One of the fundamental interests in granular materials
is its seemingly counter-intuitive behaviour due to the
fact that granular systems are inherently driven [1]. This
means that simple interpretations of the second law of
thermodynamics fall short of observation, a poignant illus-
tration of which is the so-called Maxwell’s demon exper-
iment. In this demonstration experiment, initially devel-
oped for physics teaching [2], a box is split into two halves
by a wall with a slit at a certain height h, filled with NV
granular particles and driven/shaken at a set frequency f.
When the driving is done slowly, the particles in the box
collect in one of the two halves, 7.e. the granular system
has separated into a low- and a high-density phase. This is
particularly surprising since it seems to indicate that order
can be created from a random driving of particles. Taking
into account the inelasticity of the collision between par-
ticles, the effect can be described theoretically [3], which
quantitatively predicts the observed instability. A similar
approach can also lead to ratcheting behaviour in a gran-
ular gas, when many compartments are arranged next to
each other [4].

The theory [3] adopts kinetic gas theory [5] to derive
a conditional equation for the transition from the state
of equal distribution to the phase-separated one. It does
so by assuming that all energy inserted into the system
per driving cycle, i.e. the heating rate, must be balanced
by the dissipation rate due to inelastic collisions. From
this, one can then derive a constant granular tempera-
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ture Tp at height h above the bottom boundary. Note
that in this approach it is assumed that the tempera-
ture is constant in time, i.e. that the driving is fast on
the time scale of the cooling rate inherent in a granular
gas [6]. Given such a temperature, a granular version of
the Navier-Stokes equation yields a particle density dis-
tribution akin to that of an ideal gas, i.e. a barometric
height formula n(z) « exp(—gz/T.). This density distri-
bution and the constant temperature directly give the par-
ticle flux j from either side of the box into the other via
j o< n(2)v/T. Equating these fluxes on both sides of the
divide and looking only at deviations from the mean par-
ticle number, gives a condition for phase separation as

2e = tanh(u2e). (1)
Here 2 = |(Nett — Nright)/N| is the order parameter, de-
scribing the degree of separation varying from 0 to 1. In
addition, pu o< gh/T}, is the control parameter, where nat-
urally the ratio of dissipative to driving forces enter via
the determination of T},. Equation (1) is very similar to
the definition of the Langevin function in the description
of paramagnets and describes a second-order phase tran-
sition between the ordered and disordered state. This can
also be described as a pitchfork bifurcation, where there is
only one stable solution € = 0 for p smaller than its criti-
cal value piciy = 1, while two stable solutions € # 0 evolve
if 4 > perit- Due to the fact that the control parameter
is given by the balance of driving and dissipative forces,
it strongly depends on the way the system is heated as
well as on the height dependence of the particle density
distribution. In [3] the system is driven using a saw-tooth
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oscillation at a frequency f with an amplitude a. This
means that all particles colliding with the bottom bound-
ary will always find it moving upwards at the driving ve-
locity v, = af. Therefore the granular temperature will be
directly related to vy, by T}, o v7/n, such that the control
parameter will be given by

h 2
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where o is the effective area of the particles, a is the coeffi-
cient of restitution of the collisions and N/F is the number
of particles per area. In the above derivation it was found
that there was a critical value of pciy = 1 above which
phase separation occurs. With this scaling of the control
parameter, one directly finds that the phase separation
occurs at low frequency and that the critical frequency
scales with ¢'/2. Note that in the experiments described
below, the excitation of the system is performed using a
square-wave oscillation. This will change this scaling as
described in Section 3.

The theory so far has been found to describe the sep-
aration process well, both in simulations [3], and in ex-
periment [7]. Subsequently, it has been expanded to de-
scribe an arbitrary number of compartments [8], which
also describes experiments and simulations to good accu-
racy. However, all of these results have been obtained un-
der the condition of normal gravity and therefore are not
able to test the scaling of the critical frequency with g.
This is of particular interest since a similar phase separa-
tion as that of Maxwell’s demon has been predicted even
in the absence of external fields such as gravity [9]. Thus
there should be a crossover from the theory of Eggers [3]
at high ¢ and clustering models such as that of Brey [9],
which are valid at zero g. However, in such models the
numerical values of the critical parameters cannot be rea-
sonably determined for our experimental setup, such that
a quantitative comparison at zero g is not possible. Here,
we study the crossover between different phase separations
by studying Maxwell’s demon at a set of varying effective
gravitational accelerations geg using diamagnetic particles
in a strong magnetic-field gradient [10,11]. It is possible to
achieve levitation for many materials in the strong mag-
netic fields produced by modern superconducting cryo-
magnets, such that even the extreme case of microgravity
can be tested, where no separation should take place. Fur-
thermore we develop a quantitative description of the di-
minishing relevance of Eggers’ theory at low accelerations
due to the time scale inherent in the cooling of a granular
gas [6]. This will also give a reasonable description of the
instability at zero g.

2 Experimental setup

A diamagnetic particle acquires an induced moment an-
tiparallel and proportional to the externally applied mag-
netic field and thereby a potential energy U oc B2. Ac-
cordingly, in an inhomogeneous field, the force acting on
the material is determined by the product of field and field
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Fig. 1. The setup as used to study the gravity dependence in
the Maxwell’s demon experiment. The cell has a wall with a
horizontal slit inserted and is mounted via a long rod (60 cm)
to the speaker, illumination is from below, the container is
observed with a CCD camera from above. The piston posi-
tion while shaking is indicated in the lower panel showing a
square-wave excitation with an amplitude of 1 cm.

gradient, F' o« B - VB. The total force acting on the par-
ticle above a strong magnetic field thus is the sum of the
gravitational force —mg and the diamagnetic repulsion
that is proportional to B -V B. The effective gravitational
acceleration is thus given by

Gt =9 — ——B-0.B, (3)
Hop

in the direction of the applied field. Radially, the dipolar
nature of the field implies a radial force pointing inward,
such that the particle can be held in a stable state. If the
gravitational and magnetic terms compensate each other
in the expression above, we actually have a levitating state
comparable to actual weightlessness [11].

The experimental setup [12] is made up of a strong su-
perconducting magnet coil (NbgSn, Oxford) with a cylin-
drical bore of 4 cm in diameter accessible for experiments
and a sample container which can be evacuated and is
mounted on a loud-speaker via a long connecting rod as is
illustrated in Figure 1. A field strength of up to 20T can
be generated, which corresponds to a maximum B, -0, B of
approximately 1800 T?/m. The sample container is made
of a closed glass cylinder with an inner diameter of 1.4 cm
split into two parts by a plexi-glass wall, which has a
horizontal slit at the height of 1cm. In order to have
a strong effect of diamagnetism, the granular particles
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b)

Fig. 2. a) shows a snapshot of the first (left) and last (right)
picture of a videotaped Maxwell’s demon experiment at 0T
using 230 bismuth particles. b) shows an early (left) and late
(right) snapshot of the same sample in microgravity while the
driving is on. There is still some degree of separation.

are made from bismuth due to its high susceptibility of
X = 165 - 1075, The container is filled with 230 bismuth
particles with an approximate diameter of § ~ 700 pm
sorted by weight to have a polydispersity of less than 5%.
In our magnet, bismuth requires a field of 13.7T (with
B, -0,B = 730T?/m) to levitate.

The sample is illuminated from below using a set of
LEDs (visible in Fig. 1), while the dynamics is observed
from above using a lipstick CCD camera capable of record-
ing 120 frames per second at a resolution of 640 x 480
pixels. The excitation of the sample is obtained by the
connection of the container to a loud-speaker, which is
driven with a square-wave oscillation. This is because the
speaker used here is no longer linear enough to give a good
response at the frequencies necessary for a saw-tooth ex-
citation. The amplitude of the driving is fixed to 0.5cm
in all experiments discussed below.

From the video-recording of the granular container, we
are able to obtain the density of particles in the different
halves. This is done by either counting the number of par-
ticles at the end when particles are at rest or by the aver-
age image intensity when the particles are moving too fast
to be discerned. We thus experimentally obtain the order
parameter ¢ = \(% —1)| as a function of time. Here we
will only discuss the stationary state at the end, as we are
interested in the phase separation and not its dynamics.
Therefore only the particles in the last frame in the video
are studied. The average image intensity is applied to the
last 10 frames to gain better statistics. This is only valid if
there is no stacking of particles, i.e. if the number of par-
ticles is low enough. Snapshots of the first and last frame
of a run with a frequency below the transition frequency
ferit are shown in Figure 2 for a sample in normal gravity
as well as a sample with levitating particles.

In a typical run, the sample in the container is shaken
for a period of 180 s each at a number of frequencies, while
the whole process is being observed from above. A series
of frequencies is chosen with smaller intervals close to the
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transition point fe.; for a more accurate determination
of the transition. The procedure is repeated for different
applied magnetic fields in order to study directly the effect
of gravitation on the critical point of the transition. Thus
we are able to determine the dependence of the transition
point on the effective gravitational acceleration.

3 Theoretical description

As discussed above, the driving method in our experi-
ments is different from the one considered in the deriva-
tion of [3] as well as in previous experiments. However, the
nature of the instability as described by the dependence
of the order parameter € on the control parameter p as
given in equation (1) remains the same, when the control
parameter is rescaled to take into account the different
type of driving. To be able to compare the experimentally
determined order parameter with theoretical predictions,
this rescaling is derived here briefly. The main feature of
the derivation is in equating of heat rate Q and dissipa-
tion rate I, such that the driving mainly determines the
granular temperature. The heat rate is determined by the
energy density transfer e per collision event of a single
particle with the bottom boundary and the number of
particles that are hit within the time interval 7 = 1/f of
one shaking cycle. In case of a saw-tooth driving the en-
ergy density transfer is simply given by e = pab = pvZ,
where p is the mass density of a particle, and b = a/72
the acceleration of the driving. The number of particles
is determined by the particle flux close to the bottom.
This leads to a temperature dependence of T}, vf and
therefore a control parameter that is given by u oc g/ f2.
For the case of a square-wave excitation as in our ex-
periment, the acceleration is only obtained in a very short
time period ¢ during which the piston moves. Thus only
those particles colliding with the bottom boundary within
this fraction 1 of the oscillation time period 7 will be able
to pick up energy. For the energy density transfer per col-

lision one may thus write e = pab = pg—i. The heat rate

then is @ = n(0) - F - a - g‘;j, where F' is the area of the
container. With the dissipation given by collisions between
particles, i.e. I o< (1—a?)n?T?3/? where «a is the coefficient

of restitution, this results in a granular temperature of

a2 2/3
Ty = (a‘f)Z/5 : <0’N(1 _Fa2)192> ’ (4)

where ¢ is the effective cross-section of a particle. In the
derivation of the instability, this new temperature needs
to be inserted into the density profile with height, n(z)
exp(—gh/T). One thus obtains a similar instability as in
equation (1) resulting in

2e = tanh(fi2e). (5)

Again, the control parameter i < gh/T is determined by

the ratio of temperature and barrier. An exact calculation
gives for the control parameter

h(o(1—a?)92N/F)?/3 ¢
a295/3 ’ f2/3'

crit

(6)

i=
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Fig. 3. Bifurcation diagram in the case of an applied field of
10 T. This corresponds to an effective gravitational acceleration
of 4m/s®. The data were obtained from a series of separation
experiments as discussed in Section 2. The critical point is
noticeably displaced from its predicted value of 1. The line is
a Langevin function with a critical point at 1 = 0.9 describing
the data within the errors.

As can be seen from equation (5), this control parameter
has the critical value of fic;it = 1. The rescaled control
parameter scales linearly with the gravitational accelera-
tion as was the case previously but differently with the
driving frequency. All the constants entering the prefac-
tor can be determined independently in the experiment,
such that this is known without adjustable parameters.
In particular, the time ¢ over which the piston moves is
found to be independent of the driving frequency. For the
case of the experiments discussed below, we find a con-
trol parameter i = 0.65g/f2/3, with g in units of m/s?
and f in Hz. Therefore the bifurcation can be predicted
theoretically and compared to the experiment. An exam-
ple of this can be seen in Figure 3 and describes the data
reasonably well.

4 Results

As an illustration of the pitchfork bifurcation nature of the
instability, we show the dependence of the order parame-
ter € on i in Figure 3. These measurements were obtained
at an applied field of 10 T, which corresponds to an effec-
tive gravitational acceleration of 4m/s%. The data follow
the prediction of the theory, i.e. a Langevin function, rea-
sonably well, as can be seen by comparing the data to the
full line in the figure. Note, however, that here we have
used a critical value of [ic;y = 0.9 to describe the data,
whereas a value of unity would be predicted theoretically.
This indicates that at such lower values of the effective
gravitational acceleration, the theory still predicts the na-
ture of the instability but quantitatively disagrees with
the experiment. Thus the assumptions behind the theory
start to be violated at effective gravitational accelerations
comparable to the experiment shown in Figure 3. In com-
parison, the data at normal gravity follow the prediction
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Fig. 4. (Color online) All bifurcations plotted into one graph,
scaled with the effective gravitational acceleration. As can be
seen, the agreement with the theoretical predictions decreases
with decreasing effective acceleration. The critical point for
the transition is shifted to lower values than would be ex-
pected. This corresponds to a higher critical frequency as can
also be seen in Figure 5. Most importantly, there is still a
frequency-dependent separation taking place at microgravity.
This cannot be resolved here since g vanishes and all frequen-
cies at levitation are plotted on the same line.

with a critical control parameter of fi..it = 1 (see Fig. 4),
such that we can see that the validity of the assumptions
indeed depends on geg. The most blatant disagreement
of the above theory and our experiment is however indi-
cated in Figure 2, where it can be seen that phase sepa-
ration also occurs in a levitated sample. In this case, even
the shape of the bifurcation is however no longer prop-
erly described by the theory. Thus we observe a gradual
crossover from data, which are well described by the bi-
furcation theory outlined above to a qualitative difference
of a phase separation where none should occur accord-
ing to theory. This is summarized in Figure 4, where the
different experiments for all effective gravitational accel-
erations are shown, scaled to their respective geg. The fig-
ure contains data points for bifurcations at effective ¢g’s of
9.8m/s*(0T), 7m/s*(7T), 4m/s*(10T), 1.8m/s?(12T),
0.2m/s*(13T) and 0m/s?*(13.7T). The deviations from
the prediction fieit = 1 increase with decreasing g.g and
are highly significant for geg < 3m/s?. In fact, at such low
effective accelerations, the bifurcation diagrams no longer
follow a Langevin function in the control parameter f.
Thus the data indicate that there is a shift in the crit-
ical value of the instability and even the nature of the
instability seems to be changed at very low gravitational
accelerations.

The data can also be summarized via their critical fre-
quency. The scaling of the control parameter with g di-
rectly gives a dependence of feit o ¢3/2, which is shown
by the solid line in Figure 5. As can be seen in that fig-
ure, the critical frequencies are in reasonable agreement
with the prediction for high values of the effective gravi-
tational acceleration (Eq. (6)) indicated by the solid, red
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Fig. 5. (Color online) Dots: data point of the critical fre-
quency over the effective gravitational acceleration as obtained
from the transition points in the measured bifurcations. Red
curve: theoretical prediction of the ratio of critical frequency to
gravitational acceleration. There is good agreement for normal
gravitation while the deviations become more pronounced for
values of gesr below about 4m/ s2.

line, but start to deviate at values around geg ~ 4m/s?.
This corresponds to critical frequencies of roughly 3 to
4 Hz. In the derivation above, it was assumed that on the
time scale of the driving, the dynamics of the gas should
be homogeneous. However, it was shown recently that in
a levitated sample, depending on the particle density and
the mean speed, there is a time scale of the order of a sec-
ond on which the granular gas cools and therefore forms
clusters [12]. This means that on this time scale, the Haff
time 7' = n(1 — a?)o/T/2, the assumption of homo-
geneity is no longer valid. Given the temperature of the
gas derived above (Eq. (4)), this time scale can be cal-
culated for our experiments. Equating the Haff rate with
the driving frequency gives an estimate of the critical fre-
quency at which clustering becomes important due to the
driving mechanism and therefore separation should occur
in the absence of gravity. One obtains

N

where H is the effective height filled by the granular gas.
This height is determined by the sample cell height as
well as the depth of the levitating potential. Both of these
scales are around 3 cm. Thus using such a reasonable value
of H ~ 3 cm, we obtain a critical frequency of f. ~ 3.5 Hz
as was shown in the experiment. It is interesting to note
that the critical parameter here directly scales with the
density as is the case in the theory of Brey [9] for a re-
alization of Maxwell’s demon in the absence of gravity.
Similarly, this argument can be used to obtain an esti-
mate of the effective acceleration at which Eggers’ theory
should break down, which is the case when the critical fre-
quency from equation (6) is equal to that of equation (7).
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With this, one obtains a value of g. = % ~ 4(1)m/s?

in good agreement with the experiment (see Fig. 5).

5 Conclusions

In conclusion, we have shown that a phase separation
is achieved in a granular Maxwell’s demon experiment
even in the absence of a gravitational acceleration. When
changing the effective gravitation by applying different
magnetic fields to diamagnetic granular samples, one can
see that at high values of g the established theory can de-
scribe the data reasonably well, but starts to disagree at
accelerations around 4 m/s?. As discussed in the introduc-
tion, the derivation of the theory assumes a homogeneous
heating mechanism that is fast compared to the heat con-
duction in the granular gas and to the ensuing homogene-
ity of the density. When taking into account the effect of
clustering in a granular gas, a phase separation can be ob-
tained even in the absence of gravity [9]. As has recently
been shown [12], when the effect of gravity is reduced,
the inherent cooling process due to the collisions can be
observed. This leads to an inhomogeneity in the density,
which naturally gives rise to a clustering. Thus the time
scale of cooling can be treated as a relevant time scale
on which phase separation can occur. The scaling of the
critical parameter in this case is similar to that derived by
Brey [9], but in contrast to this complete theory, we can
estimate the coeflicients entering in the cooling time, such
that a comparison to the experiment becomes possible. As
the cooling time scale becomes longer as g is reduced, it
will become comparable with the critical driving frequency
for phase separation at some effective acceleration g.. For
the values of our experiment, this happens at an effective
gravity of roughly 4m/s?. As can be seen from the data
in Figure 5, this is the region of effective gravity where
the experimental deviations from the prediction start to
become significant. Therefore we would conclude that the
inherent cooling and therefore clustering in the granular
gas allows for a phase separation even in the absence of
gravity, as we also observe experimentally.
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